Skip to main content
Log in

Geometry and entropy of generalized rotation sets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

For a continuous map f on a compact metric space we study the geometry and entropy of the generalized rotation set Rot(Φ). Here Φ = (ϕ1, ..., ϕ m ) is a m-dimensional continuous potential and Rot(Φ) is the set of all µ-integrals of Φ and µ runs over all f-invariant probability measures. It is easy to see that the rotation set is a compact and convex subset of ℝm. We study the question if every compact and convex set is attained as a rotation set of a particular set of potentials within a particular class of dynamical systems. We give a positive answer in the case of subshifts of finite type by constructing for every compact and convex set K in ℝm a potential Φ = Φ(K) with Rot(Φ) = K. Next, we study the relation between Rot(Φ) and the set of all statistical limits Rot Pt (Φ). We show that in general these sets differ but also provide criteria that guarantee Rot(Φ) = Rot Pt (Φ). Finally, we study the entropy function wH(w),w ∈ Rot(Φ). We establish a variational principle for the entropy function and show that for certain non-uniformly hyperbolic systems H(w) is determined by the growth rate of those hyperbolic periodic orbits whose Φ-integrals are close to w. We also show that for systems with strong thermodynamic properties (sub-shifts of finite type, hyperbolic systems and expansive homeomorphisms with specification, etc.) the entropy function wH(w) is real-analytic in the interior of the rotation set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bousch, Le poisson n’a pas d’aretes, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 36 (2000), 489–508.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin, 1975.

    MATH  Google Scholar 

  3. R. Bowen, Some systems with unique equilibrium states, Mathematical Systems Theory 8 (1974/75), 193–202.

    Article  MathSciNet  Google Scholar 

  4. M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976.

    MATH  Google Scholar 

  5. K. Gelfert and C. Wolf, Topological pressure via periodic points, Transactions of the American Mathematical Society 360 (2008), 545–561.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Gelfert and C. Wolf, On the distribution of periodic orbits, Discrete and Continuous Dynamical Systems 26 (2010), 949–966.

    MATH  MathSciNet  Google Scholar 

  7. W. Geller and M. Misiurewicz, Rotation and entropy, Transactions of the American Mathematical Society 351 (1999), 2927–2948.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies inMathematics. Vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.

    MATH  Google Scholar 

  9. N. Haydn and D. Ruelle, Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Communications in Mathematical Physics 148 (1992), 155–167

    Article  MATH  MathSciNet  Google Scholar 

  10. O. Jenkinson, Rotation, entropy, and equilibrium states, Transactions of the American Mathematical Society 353 (2001), 3713–3739.

    Article  MATH  MathSciNet  Google Scholar 

  11. O. Jenkinson, Geometric barycentres of invariant measures for circle maps, Ergodic Theory and Dynamical Systems 21 (2001), 511–532.

    MATH  MathSciNet  Google Scholar 

  12. O. Jenkinson, Frequency locking on the boundary of the barycentre set, Experimental Mathematics 9 (2000), 309–317.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques. Institut de Hautes Études Scientifiques 51 (1980), 137–173.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, Vol. 54, Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  15. S. Kim, R. S. MacKay and J. Guckenheimer, Resonance regions for families of torus maps, Nonlinearity 2 (1989), 391–404.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Kwapisz, Every convex polygon with rational vertices is a rotation set, Ergodic Theory and Dynamical Systems 12 (1992), 333–339.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Kwapisz, A toral diffeomorphism with a nonpolygonal ratation set, Nonlinearity 8 (1995), 461–476.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Kwapisz, A priori degeneracy of one-dimensional rotation sets for periodic point free torus maps, Transactions of the American Mathematical Society 354 (2002), 2865–2895.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Misiurewicz, Rotation Theory, Misiurewicz’s webpage.

  20. M. Misiurewicz, Diffeomorphism without any measure with maximal entropy, Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 21 (1973), 903–910.

    MATH  MathSciNet  Google Scholar 

  21. M. Misiurewicz and K. Ziemian, Rotation sets and ergodic measures for torus homeomorphisms, Fundamenta Mathematicae 137 (1991), 45–52.

    MATH  MathSciNet  Google Scholar 

  22. S. Newhouse, Continuity properties of entropy, Annals of Mathematics 129 (1989), 215–235.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Poincaré, Sur les cousbes définies par les équations différentielles, in Euvres Complètes, tome 1, Gauthier-Villars, Paris, 1952, pp. 137–158.

    Google Scholar 

  24. D. Ruelle, Thermodynamic Formalism, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  25. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer, Berlin, 1981.

    Google Scholar 

  26. K. Ziemian, Rotation sets for subshifts of finite type, Fundamenta Mathematicae 146 (1995), 189–201.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wolf.

Additional information

This work was partially supported by a grant from the Simons Foundation (#209846 to Christian Wolf).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucherenko, T., Wolf, C. Geometry and entropy of generalized rotation sets. Isr. J. Math. 199, 791–829 (2014). https://doi.org/10.1007/s11856-013-0053-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-013-0053-4

Navigation