Skip to main content
Log in

Base sizes for S-actions of finite classical groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let G be a permutation group on a set Ω. A subset B of Ω is a base for G if the pointwise stabilizer of B in G is trivial; the base size of G is the minimal cardinality of a base for G, denoted by b(G). In this paper we calculate the base size of every primitive almost simple classical group with point stabilizer in Aschbacher’s collection S of irreducibly embedded almost simple subgroups. In this situation we also establish strong asymptotic results on the probability that randomly chosen subsets of Ω form a base for G. Indeed, with some specific exceptions, we show that almost all pairs of points in Ω are bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aschbacher, On the maximal subgroups of the finite classical groups, Inventiones Mathematicae 76 (1984), 469–514.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Mathematical Journal 63 (1976), 1–91.

    MATH  MathSciNet  Google Scholar 

  3. J. Bamberg, M. Giudici, M.W. Liebeck, C. E. Praeger and J. Saxl, The classification of almost simple 3 2 -transitive groups, Transactions of the American Mathematical Society 365 (2013), 4257–4311.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Bochert, Über die Zahl verschiedener Werte, die eine Funktion gegebener Buchstaben durch Vertauschung derselben erlangen kann, Mathematische Annalen 33 (1889), 584–590.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, Journal of Symbolic Computation 24 (1997), 235–265.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Bourbaki, Groupes et Algebrès de Lie (Chapters 4, 5 and 6), Hermann, Paris, 1968.

    Google Scholar 

  7. J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Lowdimensional Finite Classical Groups, LMS Lecture Note Series Vol. 407, London Mathematical Society Lecture Note Series, Cambridge University Press, 2013.

  8. T. Breuer, Manual for the GAP Character Table Library, Version 1.1, RWTH Aachen, 2004.

  9. T. Breuer, GAP Computations with O +(8, 5).S 3 and O +(8, 2).S 3, RWTH Aachen, 2006; http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/o8p2s3_o8p5s3.htm.

  10. T. C. Burness, Fixed point spaces in actions of classical algebraic groups, Journal of Group Theory 7 (2004), 311–346.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. C. Burness, Fixed point ratios in actions of finite classical groups, II, Journal of Algebra 309 (2007), 80–138.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. C. Burness, Fixed point ratios in actions of finite classical groups, IV, Journal of Algebra 314 (2007), 749–788.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. C. Burness, On base sizes for actions of finite classical groups, Journal of the London Mathematical Society 75 (2007), 545–562.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. C. Burness, R. M. Guralnick and J. Saxl, On base sizes for symmetric groups, The Bulletin of the London Mathematical Society 43 (2011), 386–391.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. C. Burness, R. M. Guralnick and J. Saxl, On base sizes for algebraic groups, preprint.

  16. T. C. Burness, R. M. Guralnick and J. Saxl, Base sizes for geometric actions of finite classical groups, in preparation.

  17. T. C. Burness, M. W. Liebeck and A. Shalev, Base sizes for simple groups and a conjecture of Cameron, Proceedings of the London Mathematical Society 98 (2009), 116–162.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. C. Burness, E. A. O’Brien and R. A. Wilson, Base sizes for sporadic simple groups, Israel Journal of Mathematics 177 (2010), 307–334.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. C. Burness, C. E. Praeger and Á. Seress, Extremely primitive classical groups, Journal of Pure and Applied Algebra 216 (2012), 1580–1610.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. C. Burness, C. E. Praeger and Á. Seress, Extremely primitive sporadic and alternating groups, The Bulletin of the London Mathematical Society 44 (2012), 1147–1154.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. J. Cameron and W. M. Kantor, Random permutations: some group-theoretic aspects, Combinatorics, Probability and Computing 2 (1993), 257–262.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985.

  23. D. I. Deriziotis and G. Michler, Character table and blocks of the finite simple triality groups 3 D 4(q), Transactions of the American Mathematical Society 303 (1987), 39–70.

    MATH  MathSciNet  Google Scholar 

  24. The GAP Group, GAP — Groups, Algorithms and Programming, Version 4.4, 2004.

  25. D. Goldstein and R. M. Guralnick, Alternating forms and self-adjoint operators, Journal of Algebra 308 (2007), 330–349.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type, Memoirs of the American Mathematical Society 276 (1983).

  27. D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, Vol. 40, American Mathematical Society, Providence, RI, 1998.

    Google Scholar 

  28. R. M. Guralnick and J. Saxl, Generation of finite almost simple groups by conjugates, Journal of Algebra 268 (2003), 519–571.

    Article  MATH  MathSciNet  Google Scholar 

  29. G. Hiss and G. Malle, Low dimensional representations of quasi-simple groups, London Mathematical Society Journal of Computational Mathematics 4 (2001), 22–63.

    MATH  MathSciNet  Google Scholar 

  30. G. Hiss and G. Malle, Corrigenda: Low dimensional representations of quasi-simple groups, London Mathematical Society Journal of Computational Mathematics 5 (2002), 95–126.

    MATH  MathSciNet  Google Scholar 

  31. G. D. James, On the minimal dimensions of irreducible representations of symmetric groups, Mathematical Proceedings of the Cambridge Philosophical Society 94 (1983), 417–424.

    Article  MATH  MathSciNet  Google Scholar 

  32. C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, London Mathematical Society Monographs, Oxford University Press, 1995.

  33. P. B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups +8 (q) and of their automorphism groups, Journal of Algebra 110 (1987), 173–242.

    Article  MATH  MathSciNet  Google Scholar 

  34. P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, Vol. 129, Cambridge University Press, 1990.

  35. V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, Journal of Algebra 32 (1974), 418–443.

    Article  MATH  MathSciNet  Google Scholar 

  36. R. Lawther, M. W. Liebeck and G. M. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, Pacific Journal of Mathematics 205 (2002), 393–464.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proceedings of the London Mathematical Society 50 (1985), 426–446.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. W. Liebeck and A. Shalev, Simple groups, permutation groups, and probability, Journal of the American Mathematical Society 12 (1999), 497–520.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. W. Liebeck and A. Shalev, Character degrees and random walks in finite groups of Lie type, Proceedings of the London Mathematical Society 90 (2005), 61–86.

    Article  MATH  MathSciNet  Google Scholar 

  40. F. Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, London Mathematical Society Journal of Computational Mathematics 4 (2001), 135–169.

    MATH  Google Scholar 

  41. A. Mann, C. E. Praeger and Á. Seress, Extremely primitive groups, Groups, Geometry, and Dynamics 1 (2007), 623–660.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Neunhöffer, F. Noeske, E. A. O’Brien and R. A. Wilson, Orbit invariants and an application to the Baby Monster, Journal of Algebra 341 (2011), 297–305.

    Article  MATH  MathSciNet  Google Scholar 

  43. Á. Seress, Permutation Group Algorithms, Cambridge Tracts in Mathematics, Vol. 152, Cambridge University Press, Cambridge, 2003.

    Book  MATH  Google Scholar 

  44. N. Spaltenstein, Caractères unipotents de 3 D 4(\(\mathbb{F}_q \)), Commentarii Mathematici Helvetici 57 (1982), 676–691.

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Wagner, The faithful linear representations of least degree of S n and A n over a field of characteristic 2, Mathematische Zeitschrift 151 (1976), 127–137.

    Article  MATH  MathSciNet  Google Scholar 

  46. A. Wagner, The faithful linear representations of least degree of S n and A n over a field of odd characteristic, Mathematische Zeitschrift 154 (1977), 103–114.

    Article  MATH  MathSciNet  Google Scholar 

  47. A. Wagner, An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field, Archiv der Mathematik 29 (1977), 583–589.

    Article  MATH  MathSciNet  Google Scholar 

  48. R. A. Wilson et al., A World-Wide-Web Atlas of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Burness.

Additional information

The authors would like to thank Dr. T. Breuer for his assistance with a computer calculation (see Lemma 5.5). They also thank Dr. C. Roney-Dougal for supplying the list of subgroups in S in the low dimensional classical groups (see Table 14), which is taken from the forthcoming book [7]. The first author was supported by EPSRC grant EP/I019545/1. The second author was partially supported by NSF grant DMS-1001962 and by Simons Foundation Fellowship 224965.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burness, T.C., Guralnick, R.M. & Saxl, J. Base sizes for S-actions of finite classical groups. Isr. J. Math. 199, 711–756 (2014). https://doi.org/10.1007/s11856-013-0059-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-013-0059-y

Keywords

Navigation