Skip to main content
Log in

On toral eigenfunctions and the random wave model

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this Note is to provide a deterministic implementation of the random wave model for the number of nodal domains in the context of the two-dimensional torus. The approach is based on recent work due to Nazarov and Sodin and arithmetical properties of lattice points on circles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourgain, On Pleijel’s nodal domain theorem, International Mathematics research Notices, to appear.

  2. M. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, Journal of Physics. A. Mathematical and General 35 (2002), 3025–3038.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bombieri and J. Bourgain, A problem on sums of two squares, International Mathematics Research Notices. IMRN, to appear.

  4. E. Bogomolny and C. Schmit, Percolation model for nodal domains of chaotic wave functions, Physical Review Letters 88 (2002), 114102.

    Article  Google Scholar 

  5. E. Bogomolny and C. Schmit, Random wave functions and percolation, Journal of Physics. A. Mathematical and General 40 (2007), 14033–14043.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Evertse, H. Schlickewei and W. Schmidt, Linear equations with variables which lie in a multiplicative group, Annals of Mathematics 155 (2002), 807–836.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Erdős and R. Hall, On the angular distribution of Gaussian integers with fixed norm, Discrete Mathematics 200 (1999), 87–94.

    Article  MathSciNet  Google Scholar 

  8. L. Fainsilber, P. Kurlberg and B. Wennberg, Lattice points on circles and discrete velocity models for the Baltzmann equation, SIAM Journal on Mathematical Analysis 37 (2006), 1903–1922.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Ghosh, A. Reznikov and P. Sarnak, Nodal domains of Maass forms, I, Geometric and Functional Analysis 23 (2013), 1515–1568.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Krishnapur, Continuing nodal domains in random plane waves, preprint, 2012.

  11. H. Lewy, On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere, Communications in Partial Differential Equations 2 (1977), 1233–1244.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Nazarov and M. Sodin, On the number of nodal domains of random spherical harmonics, American Journal of Mathematics 131 (2009), 1337–1357.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Sodin, Lectures on random nodal portraits, http://www.math.tau.ac.il/~sodin/SPB-Lecture-Notes.pdf

  14. A. Stern, Bemerkungen über asymptotisches Verhallen von Eigenwerken und Eigenfunktionen, Dissertation, Göttingen, 1925.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Bourgain.

Additional information

This work was partially supported by NSF grants DMS-0808042 and DMS-0835373

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgain, J. On toral eigenfunctions and the random wave model. Isr. J. Math. 201, 611–630 (2014). https://doi.org/10.1007/s11856-014-1037-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-014-1037-z

Keywords

Navigation