Skip to main content
Log in

On the Hardy-Littlewood maximal function for the cube

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

It is shown that the Hardy-Littlewood maximal function associated to the cube in ℝn obeys dimensional free bounds in L p for p > 1. Earlier work only covered the range p > \(\frac{3}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Aldaz, The weak type (1, 1) bounds for the maximal function associated to cubes grow to infinity with the dimension, Annals of Mathematics 173 (2011), 1013–1023.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Aubrun, Maximal inequality for high dimensional cubes, Confluentes Mathematici 1 (2009), 169–179.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Bourgain, On high dimensional maximal functions associated to convex bodies, American Journal of Mathematics 108 (1986), 1467–1476.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bourgain, On the L p-bounds for maximal functions associated to convex bodies in R n, Israel Journal of Mathematics 54 (1986), 257–265.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Carbery, An almost orthogonality principle with applications to maximal functions associated to convex bodies, Bulletin of the American Mathematical Society 14 (1986), 269–273.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Müller, A geometric bound for maximal functions associated to convex bodies, Pacific Journal of Mathematics 142 (1990), 297–312.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Naor and T. Tao, Random martingales and localization of maximal inequalities, Journal of Functional Analysis 259 (2010), 731–779.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Annals of Mathematics 115 (1982), 375–392.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. M. Stein, The development of square functions in the work of A. Zygmund, Bulletin of the American Mathematical Society 7 (1982), 359–376.

    Article  MATH  Google Scholar 

  10. E. Stein, Three variations on the theme of maximal functions, in Recent Progress in Fourier Analysis (El Escorial, 1983), North-Holland Mathematics Studies, Vol. 111, North-Holland, Amsterdam, 1985, pp. 49–56.

    Chapter  Google Scholar 

  11. E. M. Stein and J. O. Strömberg, Behavior of maximal functions inn for large n, Arkiv för Matematik 21 (1983), 259–269.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Bourgain.

Additional information

Dedicated to J. Lindenstrauss

The research was partially supported by NSF grants DMS-0808042 and DMS-0835373.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgain, J. On the Hardy-Littlewood maximal function for the cube. Isr. J. Math. 203, 275–293 (2014). https://doi.org/10.1007/s11856-014-1059-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-014-1059-2

Keywords

Navigation