Skip to main content
Log in

Local rigidity of Lyapunov spectrum for toral automorphisms

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the regularity of the conjugacy between an Anosov automorphism L of a torus and its small perturbation. We assume that L has no more than two eigenvalues of the same modulus and that L4 is irreducible over ℚ. We consider a volume-preserving C1-small perturbation f of L. We show that if Lyapunov exponents of f with respect to the volume are the same as Lyapunov exponents of L, then f is C1+Hölder conjugate to L. Further, we establish a similar result for irreducible partially hyperbolic automorphisms with two-dimensional center bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Avila and M. Viana, Extremal Lyapunov exponents: an invariance principle and applications, Inventiones Mathematicae 181 (2010), 115–178.

    Article  MathSciNet  Google Scholar 

  2. K. Berg, Entropy of torus automorphisms, in Topological Dynamics (Symposium, Colorado State Univ., Ft. Collins, Colo., 1967) Benjamin, New York, 1968, pp. 67–79.

    Google Scholar 

  3. A. Gogolev, Smooth conjugacy of Anosov diffeomorphisms on higher dimensional tori, Journal of Modern Dynamics 2 (2008), 645–700.

    Article  MathSciNet  Google Scholar 

  4. A. Gogolev, B. Kalinin and V. Sadovskaya, with appendix by R. de la Llave, Local rigidity for Anosov automorphisms, Mathematical Research Letters 18 (2011), 843–858.

    Article  MathSciNet  Google Scholar 

  5. M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer, Berlin–New York, 1977.

  6. J.-L. Journé, A regularity lemma for functions of several variables, Revista Matemática Iberoamericana 4 (1988), 187–193.

    Article  MathSciNet  Google Scholar 

  7. B. Kalinin, Livšic Theorem for matrix cocycles, Annals of Mathematics 173 (2011), 1025–1042.

    Article  MathSciNet  Google Scholar 

  8. B. Kalinin and V. Sadovskaya, On local and global rigidity of quasiconformal Anosov diffeomorphisms, Journal of the Institute of Mathematics of Jussieu 2 (2003), 567–582.

    Article  MathSciNet  Google Scholar 

  9. B. Kalinin and V. Sadovskaya, On Anosov diffeomorphisms with asymptotically conformal periodic data, Ergodic Theory and Dynamical Systems 29 (2009), 117–136.

    Article  MathSciNet  Google Scholar 

  10. B. Kalinin and V. Sadovskaya, Linear cocycles over hyperbolic systems and criteria of conformality, Journal of Modern Dynamics 4 (2010), 419–441.

    Article  MathSciNet  Google Scholar 

  11. B. Kalinin and V. Sadovskaya, Cocycles with one exponent over partially hyperbolic systems, Geometriae Dedicata 167 (2013), 167–188.

    Article  MathSciNet  Google Scholar 

  12. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54, Cambridge University Press, Cambridge, 1995.

  13. F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, Institut des Hautes Études Scientifiques. Publications Mathématiques 59 (1984), 163–188.

    Article  Google Scholar 

  14. F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergodic Theory and Dynamacial Systems 2 (1982), 203–219.

    Article  MathSciNet  Google Scholar 

  15. A. N. Livšic, Homology properties of Y-systems, Matematicheskie Zametki 10 (1971), 758–763.

    Google Scholar 

  16. R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems II, Communications in Mathematical Physics 109 (1987), 368–378.

    MathSciNet  MATH  Google Scholar 

  17. R. de la Llave, Smooth conjugacy and SRB measures for uniformly and nonuniformly hyperbolic systems, Communications in Mathematical Physics 150 (1992), 289–320.

    Article  MathSciNet  Google Scholar 

  18. R. de la Llave, Rigidity of higher-dimensional conformal Anosov systems, Ergodic Theory and Dynamical Systems 22 (2002), 1845–1870.

    MathSciNet  MATH  Google Scholar 

  19. R. de la Llave, Further rigidity properties of conformal Anosov systems, Ergodic Theory and Dynamical Systems 24 (2004), 1425–1441.

    Article  MathSciNet  Google Scholar 

  20. R. de la Llave and R. Moriyón, Invariants for smooth conjugacy of hyperbolic dynamical systems IV, Communications in Mathematical Physics 116 (1988), 185–192.

    Article  MathSciNet  Google Scholar 

  21. Ya. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, Zürich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, 2004.

    Google Scholar 

  22. M. Pollicott, Ck-rigidity for hyperbolic flows II, Israel Journal of Mathematics 69 (1990), 351–360.

    Article  MathSciNet  Google Scholar 

  23. M. Pollicott and C. P. Walkden, Livšic theorems for connected Lie groups, Transactions of the American Mathematical Society 353 (2001), 2879–2895.

    Article  MathSciNet  Google Scholar 

  24. F. Rodriguez Hertz, Stable ergodicity of certain linear automorphisms of the torus, Annals of Mathematics 162 (2005), 65–107.

    Article  MathSciNet  Google Scholar 

  25. V. Sadovskaya, Cohomology of GL(2, ℝ)-valued cocycles over hyperbolic systems, Discrete and Continuous Dynamical Systems 33 (2013), 2085–2104.

    Article  MathSciNet  Google Scholar 

  26. V. Sadovskaya, Cohomology of fiber bunched cocycles over hyperbolic systems, Ergodic Theory and Dynamical Systems 35 (2015), 2669–2688.

    Article  MathSciNet  Google Scholar 

  27. R. Saghin and J. Yang, Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Advances in Mathematics 355 (2019), Article no. 106764.

  28. K. Schmidt, Representations of toral automorphisms, Topology and its Applications 205 (2016), 88–116.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Gogolev.

Additional information

Supported in part by NSF grant DMS-1823150.

Supported in part by Simons Foundation grant 426243.

Supported in part by NSF grant DMS-1764216.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogolev, A., Kalinin, B. & Sadovskaya, V. Local rigidity of Lyapunov spectrum for toral automorphisms. Isr. J. Math. 238, 389–403 (2020). https://doi.org/10.1007/s11856-020-2028-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2028-6

Navigation