Skip to main content
Log in

Low frequency dispersion law for two-dimensional metallic photonic crystals

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Using the rigorous multiple-scattering theory, we study the dispersion relation of electromagnetic (EM) waves in two dimensional dielectric photonic crystals (PCs) and metallic photonic crystals (MPCs) in the low-frequency limit. Analytic formula for the effective velocity of EM waves in PCs and MPCs is obtained. Accuracy of our formula is checked by comparing the results with rigorous calculations. For PCs, our result is exactly the same as the coherent potential approximation (CPA), which is accurate even when the filling fraction is high. But for MPCs, our approach demonstrates special advantages, while the CPA theory fails, in predicting the effective velocity of EM waves in MPCs at low frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Datta S, Chan C T, Ho K M, et al. Effective Dielectric Constant of Periodic Composite Structures[J]. Phys Rev B, 1993, 48:14936–14943.

    Article  Google Scholar 

  2. Maxwell-Garnett J C. Colours in Metal Glasses and in Metal Films[J]. Phil Trans R Soc, 1904, 203: 385–420.

    Article  Google Scholar 

  3. Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J]. Phys Rev Letter, 1987, 58: 2059–2062.

    Article  Google Scholar 

  4. Ho K M, Chan C T, Soukoulis C M. Existence of a Photonic Gap in Periodic Dielectric Structures[J]. Phys Rev Letter, 1990, 65:3152–3155.

    Article  Google Scholar 

  5. Cassagne D, Jouanin C, Bertho D. Hexagonal Photonic-Band-Gap Structures [J]. Phys Rev B, 1996, 53: 7134–7142.

    Article  Google Scholar 

  6. Li Z Y, Wang J, Gu B Y. Creation of Partial Band Gaps in Anisotropic Photonic-Band-Gap Structures[J].Phys Rev B, 1998, 58:3721–3729.

    Article  Google Scholar 

  7. Ward A J, Pendry J B. Calculating Photonic Green’s Functions Using a Nonorthogonal Finite-Difference Time-Domain Method[J]. Phys Rev B, 1998, 58: 7252–7259.

    Article  Google Scholar 

  8. Ryu H Y, Notomi M, Lee Y H. Finite-Difference Time-Domain Investigation of Band-Edge Resonant Modes in Finite-Size Two-Dimensional Photonic Crystal Slab[J]. Phys Rev B, 2003, 68:452091–452098.

    Article  Google Scholar 

  9. Fan S H, Villeneuve P R, Joannopoulos J D. Large Omnidirectional Band Gaps in Metallodielectric Photonic Crystals[J]. Phys Rev B,1996,54:11245–11251.

    Article  Google Scholar 

  10. Li Z Y, Lin L L. Photonic Band Structures Solved by a Plane-Wave-Based Transfer-Matrix Method[J]. Phys Rev E, 2003, 67:4660701–4660711.

    Google Scholar 

  11. Stefanou N, Yannopapas V, Modinos A. Heterostructures of Photonic Crystals: Frequency Bands and Transmission Coefficients[ J]. Comput Phys Commun, 1998, 113:49–77.

    Article  MATH  Google Scholar 

  12. Yannopapas V, Modinos A, Stefanou N. Waveguides of Defect Chains in Photonic Crystals [J]. Phys Rev B, 2002, 65: 2352011–2352016.

    Article  Google Scholar 

  13. Tao R, Chen Z, Sheng P. First-Principles Fourier Approach for the Calculation of the Effective Dielectric Constant of Periodic Composites[J].Phys Rev B, 1990, 41:2417–2420.

    Article  Google Scholar 

  14. Shen L C, Liu C, Korringa J, et al. Computation of Conductivity and Dielectric Constant of Periodic Porous Media [J]. J Appl Phys, 1990, 67: 7071–7081.

    Article  Google Scholar 

  15. Sheng P. Intruduction to Wave Scattering, Localization, and Mesoscopic Phenomena[M]. New York: Academic Press, 1995.

    Google Scholar 

  16. Liu Z Y, Chen C T, Sheng P. Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment Phys [J]. Phys Rev B, 2000, 62:2446–2457.

    Article  Google Scholar 

  17. Chin S K, Nicorovici N A, Mcphedran R C. Green’s Function and Lattice Sums for Electromagnetic Scattering by a Square Array of Cylinders[J]. Phys Rev E, 1994, 49:4590–4602.

    Article  Google Scholar 

  18. Nicorovici N A, McPhedran R C. Photonic Band Gaps for Arrays of Perfectly Conducting Cylinders[J]. Phys Rev E, 1995, 52:1135–1145.

    Article  Google Scholar 

  19. Kuzmiak V, Maradudin A A, Pincemin F. Photonic Band Structures of Two-Dimensional Systems Containing Metallic Components[J]. Phys Rev B, 1994, 50:16835–16844.

    Article  Google Scholar 

  20. Moreno E, Erni D, Hafner C. Band Structure Computations of Metallic Photonic Crystals with the Multiple Multipole Method[J]. Phys Rev B, 2002, 65: 2352001–2352010.

    Google Scholar 

  21. Ito T, Sakoda K. Photonic Bands of Metallic Systems II Features of Surface Plasmon Polaritons[J]. Phys Rev B, 2001, 64:451171–451178.

    Google Scholar 

  22. Kuzmiak V, Maradudin A A. Photonic Band Structures of One-and Two-Dimensional Periodic Systems with Metallic Components in the Presence of Dissipation[J]. Phys Rev B, 1996, 55: 7427–7444.

    Article  Google Scholar 

  23. Towne D H. Wave Phenomena[M]. New York: Dover Press, 1988.

    Google Scholar 

  24. Sakoda K, Kawai N, Ito T. Photonic Bands of Metallic Systems. I. Principle of Calculation and Accuracy[J]. Phys Rev B, 2001, 64: 451161–451168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzhu Ke.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (50425206, 50702038)

Biography: WANG Yun(1984–), female, Ph.D.candidate, research direction: phononic crystals, photonic crystals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Jia, H., Tian, Z. et al. Low frequency dispersion law for two-dimensional metallic photonic crystals. Wuhan Univ. J. Nat. Sci. 13, 50–54 (2008). https://doi.org/10.1007/s11859-008-0110-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-008-0110-8

Key words

CLC number

Navigation