Skip to main content

Advertisement

Log in

Imaging in head and neck cancer

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The goals of imaging in head and neck cancer are to establish tumor extent and size, to assess nodal disease, to evaluate for perineural tumor spread, and to distinguish recurrent tumor from post-treatment changes. MRI is the preferred modality for assessment of nasopharyngeal, sinonasal, and parotid tumors, because of better contrast resolution, high frequency of perineural spread, and less prominent motion artifacts. MRI is the best modality to delineate the extent of intraorbital and intracranial extension of malignant tumors. Tumors of the oropharynx, larynx, and hypopharynx are frequently primarily imaged with CT, which is less affected by breathing and swallowing artifacts. MRI is also the initial study of choice for tumors confined to the oral tongue, and possibly also for other oral cavity locations because MRI is superior in detection of tumor spread into the bone marrow. There is no clear advantage of CT or MRI for evaluation of nodal disease. Positron emission tomography (PET) is very sensitive for metastatic lymph nodes that are at least 8 mm in size and is the technique of choice in dubious cases. Imaging-guided biopsies are performed whenever needed. For imaging of treated head and neck cancer, PET scans have been found to generally offer higher sensitivity than MRI or CT. Combined PET/CT may be the modality of choice because it almost completely eliminates the false-positive and false-negative PET findings. Patients with head and neck cancer who are referred to tertiary care centers commonly arrive with cross-sectional images obtained at other institutions. Reinterpretation of these studies by dedicated radiologists frequently leads to changes in findings, which alter treatment and affect prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Chong VF, Mukherji SK, Ng SH, et al.: Nasopharyngeal carcinoma: review of how imaging affects staging. J Comput Assist Tomogr 1999, 23:984–993.

    Article  PubMed  CAS  Google Scholar 

  2. Sakata K, Hareyama M, Tamakawa M, et al.: Prognostic factors of nasopharynx tumors investigated by MR imaging and the value of MR imaging in the newly published TNM staging. Int J Radiat Oncol Biol Phys 1999, 43:273–278.

    Article  PubMed  CAS  Google Scholar 

  3. Rumboldt Z, Castillo M, Smith JK: The palatovaginal canal: can it be identified on routine CT and MRI studies. Am J Roentgenol 2002, 179:267–272.

    Google Scholar 

  4. Mukherji SK, Schmalfuss IM, Castelijns J, Mancuso AA: Clinical applications of tumor volume measurements for predicting outcome in patients with squamous cell carcinoma of the upper aerodigestive tract. Am J Neuroradiol 2004, 25:1425–1432. A detailed review of applications of tumor volume measurements in patients with head and neck cancer.

    PubMed  Google Scholar 

  5. Mukherji SK, Isaacs DL, Creager A, et al.: CT detection of mandibular invasion by squamous cell carcinoma of the oral cavity. Am J Roentgenol 2001, 177:237–243.

    CAS  Google Scholar 

  6. Lam P, Au-Yeung KM, Cheng PW, et al.: Correlating MRI and histologic tumor thickness in the assessment of oral tongue cancer. Am J Roentgenol 2004, 182:803–808.

    Google Scholar 

  7. Curtin D: Detection of perineural spread: fat suppression versus no fat suppression. Am J Neuroradiol 2004, 25:1–3.

    PubMed  Google Scholar 

  8. Bolzoni A, Cappiello J, Piazza C, et al.: Diagnostic accuracy of magnetic resonance imaging in the assessment of mandibular involvement in oral-oropharyngeal squamous cell carcinoma: a prospective study. Arch Otolaryngol Head Neck Surg 2004, 130:837–843.

    Article  PubMed  Google Scholar 

  9. Weissman JL, Carrau RL: “Puffed-cheek≓ CT improves evaluation of the oral cavity. Am J Neuroradiol 2001, 22:741–744.

    PubMed  CAS  Google Scholar 

  10. Hsu WC, Loevner LA, Karpati R, et al.: Accuracy of magnetic resonance imaging in predicting absence of fixation of head and neck cancer to the prevertebral space. Head Neck 2005, 27:95–100.

    Article  PubMed  Google Scholar 

  11. Becker M: Neoplastic invasion of laryngeal cartilage: radiologic diagnosis and therapeutic implications. Eur J Radiol 2000, 33:216–229.

    Article  PubMed  CAS  Google Scholar 

  12. Becker M, Zbaren P, Delavelle J, et al.: Neoplastic invasion of the laryngeal cartilage: reassessment of criteria for diagnosis at CT. Radiology 1997, 203:521–532.

    PubMed  CAS  Google Scholar 

  13. Thoeny HC, Delaere PR, Hermans R: Correlation of local outcome after partial laryngectomy with cartilage abnormalities on CT. Am J Neuroradiol 2005, 26:674–678.

    PubMed  Google Scholar 

  14. Zbaren P, Becker M, Lang H: Pretherapeutic staging of laryngeal carcinoma. Clinical findings, computed tomography, and magnetic resonance imaging compared with histopathology. Cancer 1996, 77:1263–1273.

    Article  PubMed  CAS  Google Scholar 

  15. Hermans R, Van den Bogaert W, Rijnders A, et al.: Predicting the local control of glottic squamous cell carcinoma after definitive radiation therapy: value of computed tomography-determined tumour parameters. Radiother Oncol 1999, 50:39–46.

    Article  PubMed  CAS  Google Scholar 

  16. Murakami R, Furusawa M, Baba Y, et al.: Dynamic helical CT of T1 and T2 glottic carcinomas: predictive value for local control with radiation therapy. Am J Neuroradiol 2000, 21:1320–1326.

    PubMed  CAS  Google Scholar 

  17. Mancuso AA, Mukherji SK, Kotzur I, et al.: Preradiotherapy-computed tomography as a predictor of local control in supraglottic carcinoma. J Clin Oncol 1999, 17:631–636.

    PubMed  CAS  Google Scholar 

  18. Ljumanovic R, Langendijk JA, Schenk B, et al.: Supraglottic carcinoma treated with curative radiation therapy: identification of prognostic groups with MR imaging. Radiology 2004, 232:440–448.

    Article  PubMed  Google Scholar 

  19. Roychowdhury S, Loevner LA, Yousem DM, et al.: MR imaging for predicting neoplastic invasion of the cervical esophagus. Am J Neuroradiol 2000, 21:1681–1687.

    PubMed  CAS  Google Scholar 

  20. Wildi SM, Fickling WE, Day TA, et al.: Endoscopic ultrasonography in the diagnosis and staging of neoplasms of the head and neck. Endoscopy 2004, 36:624–630.

    Article  PubMed  CAS  Google Scholar 

  21. Magnano M, Bongioannini G, Cirillo S, et al.: Virtual endoscopy of laryngeal carcinoma: is it useful. Otolaryngol Head Neck Surg 2005, 132:776–782.

    Article  PubMed  Google Scholar 

  22. Maroldi R, Farina D, Palvarini L, et al.: Magnetic resonance imaging findings of inverted papilloma: differential diagnosis with malignant sinonasal tumors. Am J Rhinol 2004, 18:305–310.

    PubMed  Google Scholar 

  23. Loevner LA, Sonners AI: Imaging of neoplasms of the paranasal sinuses. Magn Reson Imaging Clin N Am 2002, 10:467–493.

    Article  PubMed  Google Scholar 

  24. Eisen MD, Yousem DM, Loevner LA, et al.: Preoperative imaging to predict orbital invasion by tumor. Head Neck 2000, 22:456–462.

    Article  PubMed  CAS  Google Scholar 

  25. Hamilton BE, Salzman KL, Wiggins RH 3rd, Harnsberger HR: Earring lesions of the parotid tail. Am J Neuroradiol 2003, 24:1757–1764.

    PubMed  Google Scholar 

  26. Sakamoto M, Sasano T, Higano S, et al.: Usefulness of heavily T2-weighted magnetic resonance images for the differential diagnosis of parotid tumours. Dentomaxillofac Radiol 2003, 32:295–299.

    Article  PubMed  CAS  Google Scholar 

  27. Shah GV: MR imaging of salivary glands. Magn Reson Imaging Clin N Am 2002, 10:631–662.

    Article  PubMed  Google Scholar 

  28. Habermann CR, Gossrau P, Graessner J, et al.: Diffusion-weighted echo-planar MRI: a valuable tool for differentiating primary parotid gland tumors. Rofo 2005, 177:940–945.

    PubMed  CAS  Google Scholar 

  29. Divi V, Fatt MA, Teknos TN, Mukherji SK: Use of crosssectional imaging in predicting surgical location of parotid neoplasms. J Comput Assist Tomogr 2005, 29:315–319.

    Article  PubMed  Google Scholar 

  30. Schmalfuss IM, Tart RP, Mukherji S, Mancuso AA: Perineural tumor spread along the auriculotemporal nerve. Am J Neuroradiol 2002, 23:303–311.

    PubMed  Google Scholar 

  31. Kaylie DM, Wax MK, Weissman JL: Preoperative facial muscle imaging predicts final facial function after facial nerve grafting. Am J Neuroradiol 2003, 24:326–330.

    PubMed  Google Scholar 

  32. Ross D: Nonpalpable thyroid nodule: managing an epidemic. J Clin Endocrinol Metab 2002, 87:1938–1940. This paper discusses the controversial issue of thyroid nodules, especially those incidentally discovered on imaging studies.

    Article  PubMed  CAS  Google Scholar 

  33. Kim EK, Park CS, Chung WY, et al.: New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. Am J Roentgenol 2002, 178:687–691.

    Google Scholar 

  34. Meller J, Becker W: The continuing importance of thyroid scintigraphy in the era of high resolution ultrasound. Euro J Nuc Med 2002, 29:425–438.

    Article  Google Scholar 

  35. Wang J, Takashima S, Matsushita T, et al.: Esophageal invasion by thyroid carcinomas: prediction using magnetic resonance imaging. J Comput Assist Tomogr 2003, 27:18–25.

    Article  PubMed  Google Scholar 

  36. Takashima S, Takayama F, Wang J, et al.: Using MR imaging to predict invasion of the recurrent laryngeal nerve by thyroid carcinoma. AJR Am J Roentgenol 2003, 180:837–842.

    PubMed  Google Scholar 

  37. Hao SP, Ng SH: Magnetic resonance imaging versus clinical palpation in evaluating cervical metastasis from head and neck cancer. Otolaryngol Head Neck Surg 2000, 123:324–327.

    Article  PubMed  CAS  Google Scholar 

  38. King AD, Tse GM, Ahuja AT, et al.: Necrosis in metastatic neck nodes: diagnostic accuracy of CT, MR imaging, and US. Radiology 2004, 230:720–726.

    Article  PubMed  Google Scholar 

  39. Screaton NJ, Berman LH, Grant JW: Head and neck lymphadenopathy: evaluation with US-guided cutting-needle biopsy. Radiology 2002, 224:75–81.

    Article  PubMed  Google Scholar 

  40. Anzai Y: Superparamagnetic iron oxide nanoparticles: nodal metastases and beyond. Top Magn Reson Imaging 2004, 15:103–111.

    Article  PubMed  Google Scholar 

  41. Adams S, Baum RP, Stuckensen T, et al.: Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med 1998, 25:1255–1260.

    Article  PubMed  CAS  Google Scholar 

  42. Hart RD, Nasse JG, Trites JR, et al.: Sentinel lymph node biopsy in N0 squamous cell carcinoma of the oral cavity and oropharynx. Arch Otolaryngol Head Neck Surg 2005, 131:34–38.

    Article  PubMed  Google Scholar 

  43. Ginsberg LE: MR imaging of perineural tumor spread. Neuroimaging Clin N Am 2004, 14:663–677. This is a very thorough review on imaging of perineural tumor spread in head and neck cancer.

    Article  PubMed  Google Scholar 

  44. Nemzek WR, Hecht S, Gandour-Edwards R, et al.: Perineural spread of head and neck tumors: how accurate is MR imaging. Am J Neuroradiol 1998, 19:701–706.

    PubMed  CAS  Google Scholar 

  45. Yu Q, Wang P, Shi H, Luo J: Carotid artery and jugular vein invasion of oral-maxillofacial and neck malignant tumors: diagnostic value of computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003, 96:368–372.

    Article  PubMed  Google Scholar 

  46. Yousem DM, Hatabu H, Hurst RW, et al.: Carotid artery invasion by head and neck masses: prediction with MR imaging. Radiology 1995, 195:715–720.

    PubMed  CAS  Google Scholar 

  47. Mukherji SK, Toledano AY, Beldon C, et al.: Interobserver reliability of computed tomography-derived primary tumor volume measurement in patients with supraglottic carcinoma. Cancer 2005, 103:2616–2622.

    Article  PubMed  Google Scholar 

  48. Gordon AR, Loevner LA, Shukla-Dave A, et al.: Intraobserver variability in the MR determination of tumor volume in squamous cell carcinoma of the pharynx. Am J Neuroradiol 2004, 25:1092–1098.

    PubMed  Google Scholar 

  49. Schoder H, Yeung HW, Gonen M, et al.: Head and neck cancer: clinical usefulness and accuracy of PET/CT image fusion. Radiology 2004, 231:65–72.

    Article  PubMed  Google Scholar 

  50. Branstetter BF 4th, Blodgett TM, Zimmer LA, et al.: Head and neck malignancy: is PET/CT more accurate than PET or CT alone. Radiology 2005, 235:580–586.

    Article  PubMed  Google Scholar 

  51. Kapoor V, Fukui MB, McCook BM: Role of 18F FDG PET/CT in the treatment of head and neck cancers: principles, technique, normal distribution, and initial staging. Am J Roentgenol 2005, 184:579–587. This paper describes the basic principles of PET-CT imaging in patients with head and neck cancer.

    Google Scholar 

  52. Brun E, Kjellen E, Tennvall J, et al.: FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002, 24:127–135.

    Article  PubMed  Google Scholar 

  53. Fogarty GB, Peters LJ, Stewart J, et al.: The usefulness of fluorine 18-labelled deoxyglucose positron emission tomography in the investigation of patients with cervical lymphadenopathy from an unknown primary tumor. Head Neck 2003, 25:138–145.

    Article  PubMed  Google Scholar 

  54. Kapoor V, Fukui MB, McCook BM: Role of 18F FDG PET/CT in the treatment of head and neck cancers: posttherapy evaluation and pitfalls. Am J Roentgenol 2005, 184:589–597. This paper summarizes the role of PET-CT in patients with treated head and neck cancer, and it also discusses the most common pitfalls of this combined imaging modality.

    Google Scholar 

  55. Rumboldt Z, Al-Okaili R, Roberts D, Deveikis J: Perfusion CT for head and neck tumors: pilot study. Am J Neuroradiol 2005, 26:1178–1185.

    PubMed  Google Scholar 

  56. Sherman PM, Yousem DM, Loevner LA: CT-guided aspirations in the head and neck: assessment of the first 216 cases. Am J Neuroradiol 2004, 25:1603–1607.

    PubMed  Google Scholar 

  57. Titton RL, Gervais DA, Boland GW, et al.: Sonography and sonographically guided fine-needle aspiration biopsy of the thyroid gland: indications and techniques, pearls and pitfalls. Am J Roentgenol 2003, 181:267–271.

    Google Scholar 

  58. Som PM, Silvers AR, Urken ML: Surveillance CT and the prompt use of CT-guided fine-needle aspiration in patients with head and neck cancer who have undergone surgery. Am J Roentgenol 1999, 173:1505–1508.

    CAS  Google Scholar 

  59. Loevner LA, Sonners AI, Schulman BJ, et al.: Reinterpretation of cross-sectional images in patients with head and neck cancer in the setting of a multidisciplinary cancer center. Am J Neuroradiol 2002, 23:1622–1626. This study reveals the importance of reinterpretation of outside imaging studies by dedicated radiologists in patients with head and neck cancer.

    PubMed  Google Scholar 

  60. Ginsberg LE: Reinterpretation of head and neck scans: massive can of worms or call to action. Am J Neuroradiol 2002, 23:1617–1618.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumboldt, Z., Gordon, L., Bonsall, R. et al. Imaging in head and neck cancer. Curr. Treat. Options in Oncol. 7, 23–34 (2006). https://doi.org/10.1007/s11864-006-0029-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-006-0029-2

Keywords

Navigation