Skip to main content
Log in

Windowed special affine Fourier transform

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

With the aim to circumvent the limitations of the special affine Fourier transform, we introduce a novel time–frequency transform namely the windowed special affine Fourier transform. We initiate our investigation by studying some fundamental properties of the proposed transform such as orthogonality relation, inversion formula and characterization of the range by employing the machinery of special affine Fourier transforms and operator theory. Continuing our endeavour, we propose a discrete analogue of the proposed windowed special affine Fourier transform and obtain the corresponding reconstruction formula. Besides, some potential applications of this new transform including windowed series expansion, Poisson summation formula, Paley–Wiener criterion and uncertainty principles are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debnath, L., Shah, F.A.: Wavelet Transforms and Their Applications. Birkhäuser, New York (2015)

    MATH  Google Scholar 

  2. Debnath, L., Shah, F.A.: Lecture Notes on Wavelet Transforms. Birkhäuser, Boston (2017)

    MATH  Google Scholar 

  3. Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 25, 241–265 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Almeida, L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42, 3084–3091 (1994)

    Google Scholar 

  5. Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2000)

    Google Scholar 

  6. Moshinsky, M., Quesne, C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12, 1772–1780 (1971)

    MathSciNet  MATH  Google Scholar 

  7. Nazarathy, M., Shamir, J.: First-order optics—a canonical operator representation: lossless systems. J. Opt. Soc. Am. 72, 356–364 (1982)

    MathSciNet  Google Scholar 

  8. James, D.F.V., Agarwal, G.S.: The generalized Fresnel transform and its application to optics. Opt. Commun. 126, 207–212 (1996)

    Google Scholar 

  9. Bernardo, L.M.: ABCD matrix formalism of fractional Fourier optics. Opt. Eng. 35(3), 732–740 (1996)

    Google Scholar 

  10. Xu, T.Z., Li, B.Z.: Linear Canonical Transform and Its Applications. Science Press, Beijing (2013)

    Google Scholar 

  11. Healy, J.J., Kutay, M.A., Ozaktas, H.M., Sheridan, J.T.: Linear Canonical Transforms. Springer, New York (2016)

    MATH  Google Scholar 

  12. Abe, S., Sheridan, J.T.: Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. Opt. Lett. 19, 1801–1803 (1994)

    Google Scholar 

  13. Abe, S., Sheridan, J.T.: Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach. J. Phys. 27(12), 4179–4187 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Cai, L.Z.: Special affine Fourier transformation in frequency-domain. Opt. Commun. 185, 271–276 (2000)

    Google Scholar 

  15. Xiang, Q., Qin, K.: Convolution, correlation, and sampling theorems for the offset linear canonical transform. Signal Image Video Process. 8(3), 433–442 (2014)

    Google Scholar 

  16. Qiang, X., Zhen, H.Q., Yu, Q.K.: Multichannel sampling of signals band-limited in offset linear canonical transform domains. Circuits Syst. Signal Process. 32(5), 2385–2406 (2013)

    MathSciNet  Google Scholar 

  17. Wei, D.: New product and correlation theorems for the offset linear canonical transform and its applications. Optik 164, 243–253 (2018)

    Google Scholar 

  18. Zhi, X., Wei, D., Zhang, W.: A generalized convolution theorem for the special affine Fourier transform and its application to filtering. Optik 127(5), 2613–2616 (2016)

    Google Scholar 

  19. Zhuo, Z.H.: Poisson summation formulae associated with the special affine Fourier transform and offset Hilbert transform. Math. Probl. Eng. Article ID 1354129 (2017)

  20. Xu, S., Feng, L., Chai, Y., He, Y., Chen, Z.: Reconstruction theorem for band-limited signals from noisy samples in the offset linear canonical transform domain. Optik 171, 862–868 (2018)

    Google Scholar 

  21. Xu, S., Huang, L., Chai, Y., He, Y.: Nonuniform sampling theorems for band-limited signals in the offset linear canonical transform. Circuits Syst. Signal Process. 37, 3227–3244 (2018)

    MATH  Google Scholar 

  22. Urynbassarova, D., Li, B.Z., Tao, R.: Convolution and correlation theorems for Wigner–Ville distribution associated with the offset linear canonical transform. Optik 157, 455–466 (2018)

    Google Scholar 

  23. Bhandari, A., Zayed, A.I.: Shift-invariant and sampling spaces associated with the special affine Fourier transform. Appl. Comput. Harmon. Anal. 47, 30–52 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Kou, K.I., Xu, R.H.: Windowed linear canonical transform and its applications. Signal Process. 92, 179–188 (2012)

    Google Scholar 

  25. Gabor, D.: Theory of communications. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  26. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  27. Bastiaans, M.J.: Gabor’s expansion of a signal into Gaussian elementary signals. Proc. IEEE 68(4), 538–539 (1980)

    Google Scholar 

  28. Papoulis, A.: Signal Analysis. McGraw-Hill, New York (1977)

    MATH  Google Scholar 

  29. Akan, A., Cekic, Y.: A fractional Gabor expansion. J. Frankl. Inst. 340, 391–397 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Wexler, J., Raz, S.: Discrete Gabor expansions. Signal Process. 21, 207–220 (1990)

    Google Scholar 

  31. Bang, H.H.: A property of infinitely differentiable functions. Proc. Am. Math. Soc. 108, 73–76 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Tuan, V.K., Zayed, A.I.: Paley–Wiener-type theorems for a class of integral transforms. J. Math. Anal. Appl. 266, 200–226 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Andersen, N.B.: Real Paley–Wiener theorems. Bull. Lond. Math. Soc. 36, 504–508 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Kou, K.I., Xu, R.H., Zhang, Y.H.: Paley–Wiener theorems and uncertainty principles for the windowed linear canonical transform. Math. Methods Appl. Sci. 35(17), 2122–2132 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Fei, M., Xu, Y., Yan, J.: Real Paley–Wiener theorem for the quaternion Fourier transform. Complex Var. Elliptic Equ. 62(8), 1072–1080 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Auslander, L., Meyer, Y.: A generalized Poisson summation formula. Appl. Comput. Harmon. Anal. 3(4), 372–376 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Duran, A.L., Estrada, R., Kanwal, R.P.: Extensions of the Poisson summation formula. J. Math. Anal. Appl. 218, 581–606 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Li, B.Z., Tao, R., Xu, T.Z., Wang, Y.: The Poisson sum formulae associated with the fractional Fourier transform. Signal Process. 89, 851–856 (2009)

    MATH  Google Scholar 

  39. Castaneda, J., Heusdens, R., Hendriks, R.: A generalized Poisson summation formula and its application to fast linear convolution. IEEE Signal Process. Lett. 18(9), 501–504 (2011)

    Google Scholar 

  40. Zhang, J.F., Hou, S.P.: The generalization of the Poisson sum formula associated with the linear canonical transform. J. Appl. Math. Article ID 102039 (2012)

  41. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897–1905 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Battle, G.: Heisenberg inequalities for wavelet states. Appl. Comput. Harmon. Anal. 4, 119–146 (1997)

    MathSciNet  MATH  Google Scholar 

  44. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. 5, 201–226 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.G.: The uncertainty principle associated with the continous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6, 157–181 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Guanlei, X., Xiaotong, W., Xiaogang, X.: The logarithmic, Heisenberg’s and short-time uncertainty principles associated with fractional Fourier transform. Signal Process. 89, 339–343 (2009)

    MATH  Google Scholar 

  47. Chen, L., Kou, K., Liu, M.: Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J. Math. Anal. Appl. 423, 681–700 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Bahri, M., Ashino, R.: Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. Int. J. Wavelets Multiresolut. Inf. Process. 14(3), 1650015 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Ghobber, S., Omri, S.: Time-frequency concentration of the windowed Hankel transform. Integr. Transf. Spec. Funct. 25(6), 481–496 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Shah, F.A., Tantary, A.Y.: Polar wavelet transform and the associated uncertainty principles. Int. J. Theor. Phys. 57, 1774–1786 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Shah, F.A., Tantary, A.Y.: Quaternionic shearlet transform. Optik 175, 115–125 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend sincere thanks to the anonymous referees’ for meticulously reading the manuscript and providing insightful revision suggestions thereon. The first author is supported by SERB (DST), Government of India, under Grant No. EMR/2016/007951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdous A. Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, F.A., Teali, A.A. & Tantary, A.Y. Windowed special affine Fourier transform. J. Pseudo-Differ. Oper. Appl. 11, 1389–1420 (2020). https://doi.org/10.1007/s11868-019-00319-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-019-00319-w

Keywords

Navigation