Skip to main content

Advertisement

Log in

Building-specific factors affecting indoor radon concentration variations in different regions in Bulgaria

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The study was conducted to assess the spatiality of the building factors’ effect on air quality through evaluation of indoor radon concentration in areas with different geology and geographical position. For that matter, a survey of indoor radon concentration was carried out in 174 kindergartens of three Bulgarian cities. The time-integrated measurements were performed in 777 ground floor rooms using alpha tract detectors, exposed for 3 months in cold period of 2014. The results of indoor radon concentrations vary from 20 to 1117 Bq/m3. The differences in the mean radon concentrations measured in the different cities were related to geology. The effect of building-specific factors: elevator, basement, mechanical ventilation, type of windows, number of floors, building renovation, building materials, type of room, type of heating, construction period, and availability of foundation on radon concentration variations was examined applying univariate and multivariate analysis. Univariate analysis showed that the effects of building-specific factors on radon variation are different in different cities. The influence of building factors on radon concentration variations was more dominant in inland cities in comparison to the city situated on the sea coast. The multivariate analysis, which was applied to evaluate the impact of building factors simultaneously, confirmed this influence too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamowski J, Chan HF, Shiv O, Prasher SO, Bogdan OZ, Sliusarieva A (2012) Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour Res 48(1):15–28

    Article  Google Scholar 

  • AhmadIsiyaka H, Juahir H, Toriman M, Gasim BM, AzmanAzid M, Aminu I, Usman N (2014) Spatial assessment of air pollution index using environ metric modeling techniques. J Adv Environ Biol 8(24):244–256

    Google Scholar 

  • Atik S, Yetis H, Denizli H, Evrendilek F (2013) How do different locations, floors and aspects influence indoor radon concentrations? An empirical study using neural networks for a university campus in northwestern Turkey. Indoor Built Environ 22(4):650–658

    Article  CAS  Google Scholar 

  • Atik S, Yetis H, Denizli H, Evrendilek F (2016) Monitoring spatiotemporal dynamics of indoor radon concentration in the built environment of a university campus. Fresenius Environ Bull 25(3):823–829

    CAS  Google Scholar 

  • Azman A, Juahir H, Mohd Ekhwan T, Mohd Khairul AK., Ahmad S, Che Noraini H, Nor Azlina A, Fazureen A, Mohd Talib L, Syahrir Farihan MZ, Mohamad RO, Mohammad Y (2014) Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia. Water Air Soil Pollut 225(8):2063–2077

  • Barros-Dios J, Ruano-Ravina A, Gastelu-Iturrid J, Figueiras A (2007) Factors underlying residential radon concentration: results from Galicia, Spain. Environ Res 103(2):185–190

    Article  CAS  Google Scholar 

  • Bochicchio F, Zunic SZ, Carpentieri C, Antignani S, Venoso G, Carelli CC, Veselinović N, Tollefsen T, Bossew P (2013) Radon in indoor air of primary schools: a systematic survey to evaluate factors affecting radon concentration levels and their variability. Indoor Air 24:315–326

    Article  Google Scholar 

  • Bojadgieva K, Hristov V, Srebrov V (2007) Temperature field study of fractured hydrothermal reservoirs in SE Bulgaria (Bourgas basin). J Balkan Geophys Soc 10(1):8–15

    Google Scholar 

  • Bossew P, Stojanovska Z, Zunic ZS, Ristova M (2013) Prediction of indoor radon risk from radium concentration in soil: Republic of Macedonia case study. Rom J Phys 58:29–43

    Google Scholar 

  • Bossew P, Zunic ZS, Stojanovska Z, Tollefsen T, Carpentieri C, Veselinović N, Komatina S, Vaupotič J, Simović RD, Antignani S, Bochicchio F (2014) Geographical distribution of the annual mean radon concentrations in primary schools of Southern Serbia—application of geostatistical methods. J Environ Radioact 127:141–148

    Article  CAS  Google Scholar 

  • Council of Ministers (2012) Regulation on basic norms of radiation protection. Adopted by Council of Ministers Decree No. 229 of 25.09.2012Prom. SG. 76 of 2012. http://www.bnra.bg/en/documents-en/legislation/regulations/reg-radprot-2012-en.pdf. Accessed 27 May 2017

  • Ekinci N, Kavaz E, Cinan E (2016) Measurements of indoor 222Rn in Igdir, Turkey with CR-39 detectors. Asian J Chem 28(4):921–926

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (2012) Guidelines for the assessment and management of sites impacted by hazardous ground gases. Sydney, Environment Protection Authority

    Google Scholar 

  • Euratom (2014) Council directive 2013/59/Euratom laying down basic safety standards for the protection against the dangers arising from exposure to ionising radiation, and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off J Eur Union L 13:17.1.2914

    Google Scholar 

  • IAEA, EC, FAO, ILO, OECD/NEA, PAHO, UNEP, WHO (2014) Radiation protection and safety of radiation sources: international basic safety standards, IAEA safety standards series no. GSR part 3. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ivanova K, Stojanovska Z, Tsenova M, Badulin V, Kunovska B (2013) Pilot survey of indoor radon in the dwellings of Bulgaria. Radiat Prot Dosim 157(4):594–599

    Article  CAS  Google Scholar 

  • Ivanova K, Stojanovska Z, Tsenova M, Badulin V, Kunovska B (2014) Measurement of indoor radon concentration in kindergartens in Sofia, Bulgaria. Radiat Prot Dosim 162(1–2):163–166

    Article  CAS  Google Scholar 

  • Janik M, Bossew P (2016) Analysis of simultaneous time series of indoor, outdoor and soil air radon concentrations, meteorological and seismic data. Nukleonika 61(3):295–302

    Article  CAS  Google Scholar 

  • Kandilarov A, Atakan K, Havskov J, Gospodinov D (2009) An investigation of the significance of local site effects in Plovdiv, Bulgaria. Bull Earthq Eng 7(1):181–198

    Article  Google Scholar 

  • Karpińska M, Mnich Z, Kapała J, Szpak A (2009) The evaluation of indoor radon exposure in houses. Pol J Environ Stud 18(6):1005–1012

    Google Scholar 

  • Kassomenos P, Petrakis M, Sarigiannis D, Gotti A, Karakitsios S (2011) Identifying the contribution of physical and chemical stressors to the daily number of hospital admissions implementing an artificial neural network model. Air Qual Atmos Health 4:263–272

    Article  CAS  Google Scholar 

  • Kozak K, Mazur J, Kozłowska B, Karpińska M, Przylibski TA, Mamont-Cieśla K, Grządziel D, Stawarz O, Wysocka M, Dorda J, Żebrowski A, Olszewski J, Hovhannisyan H, Dohojda M, Kapała J, Chmielewska I, Kłos B, Jankowski J, Mnich S, Kołodziej R (2011) Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon. Appl Radiat Isot 69:1459–1465

    Article  CAS  Google Scholar 

  • Kropat G, Bochud F, Jaboyedoff M, Laedermann JP, Murith C, Palacios Gruson M, Baechler S (2015a) Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units. J Environ Radioact 147:51–62

    Article  CAS  Google Scholar 

  • Kropat G, Bochud F, Jaboyedoff M, Laedermann JP, Murith C, Palacios Gruson M, Baechler S (2015b) Predictive analysis and mapping of indoor radon concentrations in estimation: a complex environment using kernel an application to Switzerland. Sci Total Environ 505:137–148

    Article  CAS  Google Scholar 

  • National Research Council, Committee on Health Risks of Exposure to Radon (1999) Health Effects of Exposure to Radon: BEIR VI (BEIR VI), D.C. National Academies Press, Washington

    Google Scholar 

  • Nikolopoulos D, Kottou S, Louizi A, Petraki E, Vogiannis E, Yannakopoulos PH (2014) Factors affecting indoor radon concentrations of Greek dwellings through multivariate statistics. J Phys Chem Biophys 4:145–150

    Google Scholar 

  • Papaefthymiou H, Mavroudis A, Kritidis P (2003) Indoor radon levels and influencing factors in houses of Patras, Greece. J Environ Radioact 66(3):247–260

    Article  CAS  Google Scholar 

  • Patra AK, Gautam S, Majumdar S, Kumar P (2016) Prediction of particulate matter concentration profile in an opencast copper mine in India using an artificial neural network model. Air Qual Atmos Health 9:697–711

    Article  CAS  Google Scholar 

  • Radulov A (2007) Active faults in the Plovdiv Depression and their long-term slip rate. J Geol Balc 36(3–4):51–56

    Google Scholar 

  • Richard M (2011) Elevator shaft pressurization for smoke control in tall buildings: the Seattle approach. Build Environ 46:2247–2254

    Article  Google Scholar 

  • Ringer W (2014) Monitoring trends in civil engineering and their effect on indoor radon. Radiat Prot Dosim 160(1–3):38–42

    Article  CAS  Google Scholar 

  • Rugg M (1989) House age, substructure and heating system: relationships to indoor radon concentrations. In process: the 1988 symposium on radon and radon reduction technology EPA-600/9-89-006b

  • Sall J (1989–2007) Statistical software JMP®, Version 10. SAS Institute Inc., Cary

  • Saniul A, McNabola A (2015) Exploring the modeling of spatiotemporal variations in ambient air pollution within the land use regression framework: estimation of PM10 concentrations on a daily basis. J Air Waste Manage Assoc 65(5):628–640

    Article  Google Scholar 

  • Sherman MH (1992) Superposition in infiltration modeling. Indoor Air 2:101–114

    Article  Google Scholar 

  • Stamenković L, Antanasijević Z, Ristić Đ, Perić-Grujić A, Pocajt V (2017) Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model. Air Qual Atmos Health 10:15–23

    Article  Google Scholar 

  • Stojanovska Z, Januseski J, Bossew P, Zunic ZS, Tollefsen T, Ristova M (2011) Seasonal indoor radon concentration in FYR of Macedonia. J Radiat Meas 46(6–7):602–610

    Article  CAS  Google Scholar 

  • Stojanovska Z, Januseski J, Boev B, Ristova M (2012) Indoor exposure of population to radon in the FYR of Macedonia. Radiat Prot Dosim 148(2):162–167

    Article  CAS  Google Scholar 

  • Stojanovska Z, Boev B, Žunić Z, Ivanova K, Ristova M, Tsenova M, Ajka S, Janevik E, Taleski V, Bossew P (2016) Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments. Radiat Environ Biophys 55(2):171–183

    Article  CAS  Google Scholar 

  • Stojanovska Z, Ivanova K, Bossew P, Boev B, Zunic ZS, Tsenova M, ]urguz Z, Kolar P, Zdravkovska M, Ristova M (2017) Prediction of long-term indoor radon concentration bases on short-term measurements. Nucl Technol Radiat Prot 32(1):77–84

    Article  Google Scholar 

  • Stroube F (2001) Air flow control in building enclosures: more than air barriers. Proc. of 8th Bldg Sci. and Tech. Conf. Toronto: 282-302

  • Szabó Z, Jordan G, Szabó C, Horváth Á, Holm Ó, Kocsy G, Csige I, Szabó P, Homoki Z (2014) Radon and thoron levels, their spatial and seasonal variations in adobe dwellings—a case study at the great Hungarian plain. Isot Environ Health Stud 50(2):211–225

    Article  Google Scholar 

  • Vuchkov D, Ivanova K, Stojanovska Z, Kunovska B, Badulin V (2013) Radon measurement in schools and kindergartens (Kremikovtsi municipality in Bulgaria). Rom J Phys 58:328–335

    Google Scholar 

  • World Health Organization (2009) In: Zeeb H, Shannoun F (eds) Handbook on indoor radon: a public health perspective. WHO Press, Geneva

    Google Scholar 

  • XLSTAT (2014) Tutorials, Statistical application for Microsoft Excel, New York, NY. Addinsoft 1995-2014. http://www.xlstat.com. Accessed 27 May 2017

  • Yarmoshenko I, Malinovsky G, Vasilyev A, Onischenko A, Seleznev A (2016) Geogenic and anthropogenic impacts on indoor radon in the Techa River region. Sci Total Environ 571:1298–1303

    Article  CAS  Google Scholar 

  • Zagorchev I (2001) Introduction to the geology of SW Bulgaria. J Geol. Balc 31(1–2):3–52

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Heads of Radiation Control Divisions of the Regional Health Inspectorate in Plovdiv, Burgas, and Pernik, Tsveta Ivanova MD, Hikolay Miltiadov MD, and Slaveia Garova MD, for good organization through detectors distribution and are particularly grateful to the kindergarten managers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kremena Ivanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, K., Stojanovska, Z., Tsenova, M. et al. Building-specific factors affecting indoor radon concentration variations in different regions in Bulgaria. Air Qual Atmos Health 10, 1151–1161 (2017). https://doi.org/10.1007/s11869-017-0501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0501-0

Keywords

Navigation