Skip to main content

Advertisement

Log in

Immunologic Similarities between Selected Autoimmune Diseases and Peanut Allergy: Possible New Therapeutic Approaches

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Food allergies are an important medical problem in Westernized countries. Allergy to peanuts is a dramatic example of a food allergy that tends to be particularly severe and long-lived. This article examines food allergy—specifically peanut allergy—from the perspective that tolerance to foods is a normal state, just as tolerance to self-proteins is a normal state. From this vantage point, loss of tolerance to foods in food-allergic individuals can be viewed as parallel to the loss of tolerance to self-proteins in those with autoimmune diseases. Although our knowledge base is far from satisfactory, there are important similarities in the immunologic abnormalities that are characteristic of both peanut allergy and several autoimmune diseases. Delineation of these similarities may open the door to new therapeutic approaches for the treatment of severe food allergies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sicherer SH, Sampson HA. Peanut allergy: emerging concepts and approaches for an apparent epidemic. J Allergy Clin Immunol. 2007;120(3):491–503. quiz 4–5.

    Article  PubMed  Google Scholar 

  2. Ben-Shoshan M, Kagan RS, Alizadehfar R, Joseph L, Turnbull E, St Pierre Y, et al. Is the prevalence of peanut allergy increasing? A 5-year follow-up study in children in Montreal. J Allergy Clin Immunol. 2009;123(4):783–8.

    Article  PubMed  Google Scholar 

  3. Burks AW. Peanut allergy. Lancet. 2008;371(9623):1538–46.

    Article  PubMed  CAS  Google Scholar 

  4. Hourihane JO, Warner JO. Allergy to peanut. Lancet. 1996;348(9040):1523.

    Article  PubMed  CAS  Google Scholar 

  5. Sicherer SH, Sampson HA. Food allergy: recent advances in pathophysiology and treatment. Annu Rev Med. 2009;60:261–77.

    Article  PubMed  CAS  Google Scholar 

  6. Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S116–25.

    Article  PubMed  Google Scholar 

  7. Leung D, Sampson H, Yunginger J, Burks A, Schneider L, Wortel C, et al. Effect of anti-IgE therapy in patients with peanut allergy. N Engl J Med. 2003;348(11):986–93.

    Article  PubMed  CAS  Google Scholar 

  8. Burks W, Sampson HA, Bannon GA. Peanut allergens. Allergy. 1998;53(8):725–30.

    Article  PubMed  CAS  Google Scholar 

  9. Wang J, Sicherer SH. Immunologic therapeutic approaches in the management of food allergy. Expert Rev Clin Immunol. 2009;5(3):301–10.

    Article  PubMed  Google Scholar 

  10. Li XM. Traditional Chinese herbal remedies for asthma and food allergy. J Allergy Clin Immunol. 2007;120(1):25–31.

    Article  PubMed  Google Scholar 

  11. Hofmann AM, Scurlock AM, Jones SM, Palmer KP, Lokhnygina Y, Steele PH, et al. Safety of a peanut oral immunotherapy protocol in children with peanut allergy. J Allergy Clin Immunol. 2009;124(2):286–91. 91 e1-6.

    Article  PubMed  CAS  Google Scholar 

  12. Jones SM, Pons L, Roberts JL, Scurlock AM, Perry TT, Kulis M, et al. Clinical efficacy and immune regulation with peanut oral immunotherapy. J Allergy Clin Immunol. 2009;124(2):292–300. e1-97.

    Article  PubMed  CAS  Google Scholar 

  13. Kolopp-Sarda MN, Moneret-Vautrin DA, Gobert B, Kanny G, Guerin L, Faure GC, et al. Polyisotypic antipeanut-specific humoral responses in peanut-allergic individuals. Clin Exp Allergy. 2001;31(1):47–53.

    PubMed  CAS  Google Scholar 

  14. Tay SS, Clark AT, Deighton J, King Y, Ewan PW. Patterns of immunoglobulin G responses to egg and peanut allergens are distinct: ovalbumin-specific immunoglobulin responses are ubiquitous, but peanut-specific immunoglobulin responses are up-regulated in peanut allergy. Clin Exp Allergy. 2007;37(10):1512–8.

    PubMed  CAS  Google Scholar 

  15. • Dreskin SC, Tripputi MT, Aubrey MT, Mustafa SS, Atkins D, Leo HL, et al. Peanut-allergic subjects and their peanut-tolerant siblings have large differences in peanut-specific IgG that are independent of HLA class II. Clin Immunol. 2010;137(3):366–73. This article demonstrates that IgG directed against peanut proteins is elevated in patients with peanut allergy, that PT individuals have lower but usually measurable amounts of this IgG, and that these findings are independent of HLA class II.

    Article  PubMed  CAS  Google Scholar 

  16. Valenta R, Mittermann I, Werfel T, Garn H, Renz H. Linking allergy to autoimmune disease. Trends Immunol. 2009;30(3):109–16.

    Article  PubMed  CAS  Google Scholar 

  17. Basten A, Fazekas de St Groth B. Special regulatory T-cell review: T-cell dependent suppression revisited. Immunology. 2008;123(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  18. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.

    Article  PubMed  CAS  Google Scholar 

  19. •• Curotto de Lafaille MA, Lafaille JJ, Graca L. Mechanisms of tolerance and allergic sensitization in the airways and the lungs. Curr Opin Immunol. 2010;22(5):616–22. This is an excellent review of mechanisms of regulation likely to be at play in tolerance to allergens.

    Article  Google Scholar 

  20. Arason GJ, Jorgensen GH, Ludviksson BR. Primary immunodeficiency and autoimmunity: lessons from human diseases. Scand J Immunol. 2010;71(5):317–28.

    Article  PubMed  CAS  Google Scholar 

  21. Brillat-Savarin A. Physiologie du Gout, ou Meditations de Gastronomie Transcendante1826.

  22. Strasser A, Puthalakath H, O’Reilly LA, Bouillet P. What do we know about the mechanisms of elimination of autoreactive T and B cells and what challenges remain. Immunol Cell Biol. 2008;86(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  23. Anderson MS, Su MA. Aire and T cell development. Curr Opin Immunol. 2010 (Epub ahead of print).

  24. Hadj-Kacem H, Rebuffat S, Mnif-Feki M, Belguith-Maalej S, Ayadi H, Peraldi-Roux S. Autoimmune thyroid diseases: genetic susceptibility of thyroid-specific genes and thyroid autoantigens contributions. Int J Immunogenet. 2009;36(2):85–96.

    Article  PubMed  CAS  Google Scholar 

  25. Tagami T, Tamanaha T, Shimazu S, Honda K, Nanba K, Nomura H, et al. Lipid profiles in the untreated patients with Hashimoto thyroiditis and the effects of thyroxine treatment on subclinical hypothyroidism with Hashimoto thyroiditis. Endocr J. 2010;57(3):253–8.

    Article  PubMed  CAS  Google Scholar 

  26. Smith BR, Bolton J, Young S, Collyer A, Weeden A, Bradbury J, et al. A new assay for thyrotropin receptor autoantibodies. Thyroid. 2004;14(10):830–5.

    Article  PubMed  CAS  Google Scholar 

  27. Drachman DB. Myasthenia gravis. N Engl J Med. 1994;330(25):1797–810.

    Article  PubMed  CAS  Google Scholar 

  28. Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26(11):1054–9.

    PubMed  CAS  Google Scholar 

  29. •• Thomas WR, Hales BJ. Immune responses to inhalant allergens. WAO Journal. 2008:89–95. This is an excellent review of mechanisms thought to play a role in tolerance to inhaled allergens

  30. Platts-Mills TA. Local production of IgG, IgA and IgE antibodies in grass pollen hay fever. J Immunol. 1979;122(6):2218–25.

    PubMed  CAS  Google Scholar 

  31. Platts-Mills TA, von Maur RK, Ishizaka K, Norman PS, Lichtenstein LM. IgA and IgG anti-ragweed antibodies in nasal secretions. Quantitative measurements of antibodies and correlation with inhibition of histamine release. J Clin Invest. 1976;57(4):1041–50.

    Article  PubMed  CAS  Google Scholar 

  32. Benson M, Reinholdt J, Cardell LO. Allergen-reactive antibodies are found in nasal fluids from patients with birch pollen-induced intermittent allergic rhinitis, but not in healthy controls. Allergy. 2003;58(5):386–92.

    Article  PubMed  CAS  Google Scholar 

  33. Jarvis D, Zock JP, Heinrich J, Svanes C, Verlato G, Olivieri M, et al. Cat and dust mite allergen levels, specific IgG and IgG4, and respiratory symptoms in adults. J Allergy Clin Immunol. 2007;119(3):697–704.

    Article  PubMed  CAS  Google Scholar 

  34. Lack G, Fox D, Northstone K, Golding J. Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003;348(11):977–85.

    Article  PubMed  Google Scholar 

  35. Thottingal TB, Stefura BP, Simons FE, Bannon GA, Burks W, HayGlass KT. Human subjects without peanut allergy demonstrate T cell-dependent, TH2-biased, peanut-specific cytokine and chemokine responses independent of TH1 expression. J Allergy Clin Immunol. 2006;118(4):905–14.

    Article  PubMed  CAS  Google Scholar 

  36. Turcanu V, Winterbotham M, Kelleher P, Lack G. Peanut-specific B and T cell responses are correlated in peanut-allergic but not in non-allergic individuals. Clin Exp Allergy. 2008;38(7):1132–9.

    Article  PubMed  CAS  Google Scholar 

  37. Flinterman AE, Pasmans SG, den Hartog Jager CF, Hoekstra MO, Bruijnzeel-Koomen CA, Knol EF, et al. T cell responses to major peanut allergens in children with and without peanut allergy. Clin Exp Allergy. 2010;40(4):590–7.

    PubMed  CAS  Google Scholar 

  38. van Wijk F, Wehrens EJ, Nierkens S, Boon L, Kasran A, Pieters R, et al. CD4 + CD25+ T cells regulate the intensity of hypersensitivity responses to peanut, but are not decisive in the induction of oral sensitization. Clin Exp Allergy. 2007;37(4):572–81.

    Article  PubMed  Google Scholar 

  39. Skrindo I, Farkas L, Kvale EO, Johansen FE, Jahnsen FL. Depletion of CD4(+)CD25(+)CD127(lo) regulatory T cells does not increase allergen-driven T cell activation. Clin Exp Allergy. 2008;38:1752–9.

    PubMed  CAS  Google Scholar 

  40. Vighi G, Marcucci F, Sensi L, Di Cara G, Frati F. Allergy and the gastrointestinal system. Clin Exp Immunol. 2008;153 Suppl 1:3–6.

    Article  PubMed  CAS  Google Scholar 

  41. Taylor RP, Lindorfer MA. Drug insight: the mechanism of action of rituximab in autoimmune disease—the immune complex decoy hypothesis. Nat Clin Pract Rheumatol. 2007;3(2):86–95.

    Article  PubMed  CAS  Google Scholar 

  42. Nakou M, Katsikas G, Sidiropoulos P, Bertsias G, Papadimitraki E, Raptopoulou A, et al. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res Ther. 2009;11(4):R131.

    Article  PubMed  Google Scholar 

  43. Cambridge G, Leandro MJ, Teodorescu M, Manson J, Rahman A, Isenberg DA, et al. B cell depletion therapy in systemic lupus erythematosus: effect on autoantibody and antimicrobial antibody profiles. Arthritis Rheum. 2006;54(11):3612–22.

    Article  PubMed  CAS  Google Scholar 

  44. Zaja F, Vianelli N, Volpetti S, Battista ML, Defina M, Palmieri S, et al. Low-dose rituximab in adult patients with primary immune thrombocytopenia. Eur J Haematol. 2010;85(4):329–34.

    Article  PubMed  CAS  Google Scholar 

  45. Penalver FJ, Alvarez-Larran A, Diez-Martin JL, Gallur L, Jarque I, Caballero D, et al. Rituximab is an effective and safe therapeutic alternative in adults with refractory and severe autoimmune hemolytic anemia. Ann Hematol. 2010;89(11):1073–80.

    Article  PubMed  CAS  Google Scholar 

  46. Simon D, Hosli S, Kostylina G, Yawalkar N, Simon HU. Anti-CD20 (rituximab) treatment improves atopic eczema. J Allergy Clin Immunol. 2008;121(1):122–8.

    Article  PubMed  CAS  Google Scholar 

  47. Oracki SA, Walker JA, Hibbs ML, Corcoran LM, Tarlinton DM. Plasma cell development and survival. Immunol Rev. 2010;237(1):140–59.

    Article  PubMed  CAS  Google Scholar 

  48. Leandro MJ, de la Torre I. Translational mini-review series on B cell-directed therapies: the pathogenic role of B cells in autoantibody-associated autoimmune diseases—lessons from B cell-depletion therapy. Clin Exp Immunol. 2009;157(2):191–7.

    Article  PubMed  CAS  Google Scholar 

  49. •• Calero I, Nieto JA, Sanz I. B cell therapies for rheumatoid arthritis: beyond B cell depletion. Rheum Dis Clin North Am. 2010;36(2):325–43. This review discusses the limitations of current therapies directed toward depletion of B cells and outlines evolving therapies that target plasma cells.

    Article  PubMed  Google Scholar 

  50. Moisini I, Davidson A. BAFF: a local and systemic target in autoimmune diseases. Clin Exp Immunol. 2009;158(2):155–63.

    Article  PubMed  CAS  Google Scholar 

  51. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ArthritisDrugsAdvisoryCommittee/UCM241199.pdf. Summary Minutes of the Arthritis Advisory Committee Meeting November 16, 2010. U.S. Food and Drug Administration (FDA).

  52. Tak PP, Thurlings RM, Rossier C, Nestorov I, Dimic A, Mircetic V, et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 2008;58(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  53. van der Heijden JW, Oerlemans R, Lems WF, Scheper RJ, Dijkmans BA, Jansen G. The proteasome inhibitor bortezomib inhibits the release of NFkappaB-inducible cytokines and induces apoptosis of activated T cells from rheumatoid arthritis patients. Clin Exp Rheumatol. 2009;27(1):92–8.

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health grant RO1-AI052164 (to Dr. Dreskin).

Disclosure

Dr. Martucci and Dr. Dreskin have served on the American Board of Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Dreskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martucci, M.A., Dreskin, S.C. Immunologic Similarities between Selected Autoimmune Diseases and Peanut Allergy: Possible New Therapeutic Approaches. Curr Allergy Asthma Rep 11, 334–339 (2011). https://doi.org/10.1007/s11882-011-0201-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-011-0201-z

Keywords

Navigation