Skip to main content
Log in

Advances in interventional cardiovascular MRI

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Because of its superior soft tissue imaging, MRI has become a valuable diagnostic tool in cardiovascular disease. These strengths make MRI attractive to guide therapeutic catheter-based procedures, both conventional and novel. We review how to configure an interventional MRI suite, how MRI catheter devices differ from conventional radiographic catheters, and finally developments in preclinical and investigational clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Duerk JL, Butts K, Hwang KP, Lewin JS: Pulse sequences for interventional magnetic resonance imaging. Top Magn Reson Imaging 2000, 11:147–162.

    Article  PubMed  CAS  Google Scholar 

  2. Duerk JL, Wong EY, Lewin JS: A brief review of hardware for catheter tracking in magnetic resonance imaging. Magma 2002, 13:199–208.

    PubMed  Google Scholar 

  3. Dick AJ, Raman VK, Raval AN, et al.: Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined XMR suite. Catheter Cardiovasc Interv 2005, 64:265–274.

    Article  PubMed  Google Scholar 

  4. Guttman MA, McVeigh ER: Techniques for fast stereoscopic MRI. Magn Reson Med 2001, 46:317–323.

    Article  PubMed  CAS  Google Scholar 

  5. Oppelt A: FISP — a new fast MRI sequence. Electromedica 1986, 54:15–18.

    Google Scholar 

  6. Madore B, Glover GH, Pelc NJ: Unaliasing by Fourierencoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999, 42:813–828.

    Article  PubMed  CAS  Google Scholar 

  7. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P: SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999, 42:952–962.

    Article  PubMed  CAS  Google Scholar 

  8. Sodickson DK, Manning WJ: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997, 38:591–603.

    Article  PubMed  CAS  Google Scholar 

  9. Guttman MA, Lederman RJ, Sorger JM, McVeigh ER: Realtime volume rendered MRI for interventional guidance. J Cardiovasc Magn Reson 2002, 4:431–442.

    Article  PubMed  Google Scholar 

  10. Konings MK, Bartels LW, Smits HF, Bakker CJ: Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 2000, 12:79–85.

    Article  PubMed  CAS  Google Scholar 

  11. Nitz WR, Oppelt A, Renz W, et al.: On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 2001, 13:105–114.

    Article  PubMed  CAS  Google Scholar 

  12. Weikl A, Moshage W, Hentschel D, et al.: [ECG changes caused by the effect of static magnetic fields of nuclear magnetic resonance tomography using magnets with a field power of 0.5 to 4.0 Telsa]. Z Kardiol 1989, 78:578–586.

    PubMed  CAS  Google Scholar 

  13. Bakker CJ, Hoogeveen RM, Hurtak WF, et al.: MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique. Radiology 1997, 202:273–276.

    PubMed  CAS  Google Scholar 

  14. Bakker CJ, Bos C, Weinmann HJ: Passive tracking of catheters and guidewires by contrast-enhanced MR fluoroscopy. Magn Reson Med 2001, 45:17–23.

    Article  PubMed  CAS  Google Scholar 

  15. Razavi R, Hill DL, Keevil SF, et al.: Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 2003, 362:1877–1882. A landmark report, the first clinical cardiovascular catheterization procedure conducted under real-time MRI in a hybrid radiographic/MRI suite.

    Article  PubMed  Google Scholar 

  16. Kuehne T, Yilmaz S, Schulze-Neick I, et al.: Magnetic resonance imaging guided catheterisation for assessment of pulmonary vascular resistance: in vivo validation and clinical application in patients with pulmonary hypertension. Heart 2005, 91:1064–1069.

    Article  PubMed  CAS  Google Scholar 

  17. Unal O, Korosec FR, Frayne R, et al.: A rapid 2D timeresolved variable-rate k-space sampling MR technique for passive catheter tracking during endovascular procedures. Magn Reson Med 1998, 40:356–362.

    Article  PubMed  CAS  Google Scholar 

  18. Frayne R, Strother CM, Unal O, et al., inventors. MR signal-emitting coatings. US Patent #6,361,759, Assignee: Wisconsin Alumni Research Foundation. March 26, 2002.

  19. Adam G, Glowinski A, Neuerburg J, et al.: MR-compatible catheters by electrically induced local field inhomogeneities: evaluation in vivo. J Magn Reson Imaging 1998, 8:209–213.

    Article  PubMed  CAS  Google Scholar 

  20. Eggers H, Weiss S, Boernert P, Boesiger P: Image-based tracking of optically detunable parallel resonant circuits. Magn Reson Med 2003, 49:1163–1174.

    Article  PubMed  Google Scholar 

  21. Konings MK, Bartels LW, van Swol CF, Bakker CJ: Development of an MR-safe tracking catheter with a laser-driven tip coil. J Magn Reson Imaging 2001, 13:131–135.

    Article  PubMed  CAS  Google Scholar 

  22. Dumoulin CL, Souza SP, Darrow RD: Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 1993, 29:411–415. A classic description of a technique to track points on active catheter devices using MRI.

    Article  PubMed  CAS  Google Scholar 

  23. Ladd ME, Zimmermann GG, Quick HH, et al.: Active MR visualization of a vascular guidewire in vivo. J Magn Reson Imaging 1998, 8:220–225.

    Article  PubMed  CAS  Google Scholar 

  24. Leung DA, Debatin JF, Wildermuth S, et al.: Intravascular MR tracking catheter: preliminary experimental evaluation. AJR Am J Roentgenol 1995, 164:1265–1270.

    PubMed  CAS  Google Scholar 

  25. Elgort DR, Wong EY, Hillenbrand CM, et al.: Real-time catheter tracking and adaptive imaging. J Magn Reson Imaging 2003, 18:621–626.

    Article  PubMed  Google Scholar 

  26. Burl M, Coutts GA, Herlihy DJ, et al.: Twisted-pair RF coil suitable for locating the track of a catheter. Magn Reson Med 1999, 41:636–638.

    Article  PubMed  CAS  Google Scholar 

  27. McKinnon GC, Debatin JF, Leung DA, et al.: Towards active guidewire visualization in interventional magnetic resonance imaging. Magma 1996, 4:13–18.

    Article  PubMed  CAS  Google Scholar 

  28. Ocali O, Atalar E: Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med 1997, 37:112–118.

    Article  PubMed  CAS  Google Scholar 

  29. Serfaty JM, Yang X, Aksit P, et al.: Toward MRI-guided coronary catheterization: visualization of guiding catheters, guidewires, and anatomy in real time. J Magn Reson Imaging 2000, 12:590–594.

    Article  PubMed  CAS  Google Scholar 

  30. Ladd ME, Quick HH: Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med 2000, 43:615–619.

    Article  PubMed  CAS  Google Scholar 

  31. Lee C, McNamara C, Viohl I, inventors: Connector and guidewire connectable thereto. Surgi-Vision, assignee. US Patent #6,714,809. March 30, 2004.

  32. Yeung CJ, Susil RC, Atalar E: RF safety of wires in interventional MRI: using a safety index. Magn Reson Med 2002, 47:187–193.

    Article  PubMed  Google Scholar 

  33. Weiss S, Vernickel P, Schaeffter T, et al.: Transmission line for improved RF safety of interventional devices. Magn Reson Med 2005, 54:182–189.

    Article  PubMed  Google Scholar 

  34. Wong EY, Zhang Q, Duerk JL, et al.: An optical system for wireless detuning of parallel resonant circuits. J Magn Reson Imaging 2000, 12:632–638.

    Article  PubMed  CAS  Google Scholar 

  35. Quick HH, Kuehl H, Kaiser G, et al.: Inductively coupled stent antennas in MRI. Magn Reson Med 2002, 48:781–790.

    Article  PubMed  Google Scholar 

  36. Serfaty JM, Yang X, Foo TK, et al.: MRI-guided coronary catheterization and PTCA: a feasibility study on a dog model. Magn Reson Med 2003, 49:258–263.

    Article  PubMed  Google Scholar 

  37. Omary RA, Green JD, Schirf BE, et al.: Real-time magnetic resonance imaging-guided coronary catheterization in swine. Circulation 2003, 107:2656–2659.

    Article  PubMed  Google Scholar 

  38. Spuentrup E, Ruebben A, Schaeffter T, et al.: Magnetic resonance--guided coronary artery stent placement in a swine model. Circulation 2002, 105:874–879.

    Article  PubMed  Google Scholar 

  39. Buecker A, Spuentrup E, Grabitz R, et al.: Magnetic resonance-guided placement of atrial septal closure device in animal model of patent foramen ovale. Circulation 2002, 106:511–515.

    Article  PubMed  Google Scholar 

  40. Rickers C, Jerosch-Herold M, Hu X, et al.: Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation 2003, 107:132–138. A good description of wholly MRI-guided deployment of an atrial septal defect occlusion device in swine, including anatomic and flow assessment.

    Article  PubMed  Google Scholar 

  41. Arepally A, Karmarkar PV, Weiss C, et al.: Magnetic resonance image-guided trans-septal puncture in a swine heart. J Magn Reson Imaging 2005, 21:463–467.

    Article  PubMed  Google Scholar 

  42. Kuehne T, Yilmaz S, Meinus C, et al.: Magnetic resonance imaging-guided transcatheter implantation of a prosthetic valve in aortic valve position: Feasibility study in swine. J Am Coll Cardiol 2004, 44:2247–2249. Real-time MRI deployment of a nitinol-based stent valve in the aorta in swine, with attention to position in relation to coronary artery ostia.

    Article  PubMed  Google Scholar 

  43. Dick AJ, Guttman MA, Raman VK, et al.: Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 2003, 108:2899–2904. MRI-guided delivery of labeled cells precisely to borders of myocardial infarction.

    Article  PubMed  Google Scholar 

  44. Karmarkar PV, Kraitchman DL, Izbudak I, et al.: MRtrackable intramyocardial injection catheter. Magn Reson Med 2004, 51:1163–1172.

    Article  PubMed  CAS  Google Scholar 

  45. Lederman RJ, Guttman MA, Peters DC, et al.: Catheterbased endomyocardial injection with real-time magnetic resonance imaging. Circulation 2002, 105:1282–1284.

    PubMed  Google Scholar 

  46. Saeed M, Lee R, Martin A, et al.: Transendocardial delivery of extracellular myocardial markers by using combination X-ray/MR fluoroscopic guidance: feasibility study in dogs. Radiology 2004, 231:689–696.

    Article  PubMed  Google Scholar 

  47. Corti R, Badimon J, Mizsei G, et al.: Real time magnetic resonance guided endomyocardial local delivery. Heart 2005, 91:348–353.

    Article  PubMed  CAS  Google Scholar 

  48. Wildermuth S, Dumoulin CL, Pfammatter T, et al.: MRguided percutaneous angioplasty: assessment of tracking safety, catheter handling and functionality. Cardiovasc Intervent Radiol 1998, 21:404–410.

    Article  PubMed  CAS  Google Scholar 

  49. Buecker A, Adam GB, Neuerburg JM, et al.: Simultaneous real-time visualization of the catheter tip and vascular anatomy for MR-guided PTA of iliac arteries in an animal model. J Magn Reson Imaging 2002, 16:201–208.

    Article  PubMed  Google Scholar 

  50. Omary RA, Frayne R, Unal O, et al.: MR-guided angioplasty of renal artery stenosis in a pig model: a feasibility study. J Vasc Interv Radiol 2000, 11:373–381.

    Article  PubMed  CAS  Google Scholar 

  51. Raman VK, Karmarkar PV, Guttman MA, et al.: Real-time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol 2005, 45:2069–2077.

    Article  PubMed  Google Scholar 

  52. Raval AN, Telep JD, Guttman MA, et al.: Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in Swine. Circulation 2005, 112:699–706. The comparative utility of active versus passive guidewires during stent deployment in swine.

    Article  PubMed  Google Scholar 

  53. Manke C, Nitz WR, Djavidani B, et al.: MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 2001, 219:527–534.

    PubMed  CAS  Google Scholar 

  54. Paetzel C, Zorger N, Bachthaler M, et al.: Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Invest Radiol 2005, 40:257–262.

    Article  PubMed  Google Scholar 

  55. Kee ST, Ganguly A, Daniel BL, et al.: MR-guided transjugular intrahepatic portosystemic shunt creation with use of a hybrid radiography/MR system. J Vasc Interv Radiol 2005, 16:227–234. A landmark report of MRI-guided human transjugular intrahepatic portosystemic shunt procedures in an MRI system containing an integrated radiographic system.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lederman MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, V.K., Lederman, R.J. Advances in interventional cardiovascular MRI. Curr Cardiol Rep 8, 70–75 (2006). https://doi.org/10.1007/s11886-006-0014-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-006-0014-1

Keywords

Navigation