Skip to main content
Log in

The Use of Biomarkers in the Patient with Heart Failure

  • Congestive Heart Failure (J Lindenfeld, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Heart failure is a major burden to the health care system in terms of not only cost, but also morbidity and mortality. Appropriate use of biomarkers is critically important to allow rapid identification and optimal risk stratification and management of patients with both acute and chronic heart failure. This review will discuss the biomarkers that have the most diagnostic, prognostic, and therapeutic value in patients with heart failure. We will discuss established biomarkers such as natriuretic peptides as well as emerging biomarkers reflective of myocyte stress, myocyte injury, extracellular matrix injury, and both neurohormonal and cardio-renal physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215.

    Google Scholar 

  2. Heart Disease and Stroke Prevention Addressing the Nation's Leading Killers: At A Glance 2011. Centers for Disease Control and Prevention. http://www.cdc.gov/chronicdisease/resources/publications/AAG/dhdsp.htm

  3. Van Kimmenade RR, Januzzi Jr JL. Emerging biomarkers in heart failure. Clin Chem. 2012 Jan;58(1):127–38.

  4. Jackson G, Gibbs CR, Davies MK, Lip GY. ABC of heart failure. Pathophysiology BMJ. 2000;320(7228):167–70.

    Google Scholar 

  5. Pandit K, Mukhopadhyay P, Ghosh S, Chowdhury S. Natriuretic peptides: Diagnostic and therapeutic use. Indian J Endocrinol Metab. 2011 Oct;15 Suppl 4:S345–53.

  6. Kimura K, Yamaguchi Y, Horii M, Kawata H, Yamamoto H, Uemura S, et al. ANP is cleared much faster than BNP in patients with congestive heart failure. Eur J Clin Pharmacol. 2007 Jul;63(7):699–702.

  7. McCullough PA, Nowak RM, McCord J, Hollander JE, Herrmann HC, Steg PG, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation. 2002 Jul 23;106(4):416–22.

  8. Moe GW, Howlett J, Januzzi JL, Zowall H, Canadian Multicenter Improved Management of Patients With Congestive Heart Failure (IMPROVE-CHF) Study Investigators. N-terminal pro-B-type natriuretic peptide testing improves the management of patients with suspected acute heart failure: primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Circulation. 2007;115(24):3103–10.

    Google Scholar 

  9. Moe GW, Howlett J, Januzzi JL, Zowall H, Canadian Multicenter Improved Management of Patients With Congestive Heart Failure (IMPROVE-CHF) Study Investigators. N-terminal pro-B-type natriuretic peptide testing improves the management of patients with suspected acute heart failure: primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Circulation. 2007;115(24):3103–10.

    Google Scholar 

  10. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2008;29(19):2388–442.

    Google Scholar 

  11. Maisel A, Hollander JE, Guss D, McCullough P, Nowak R, Green G, et al. A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J Am Coll Cardiol. 2004;44(6):1328–33.

    Google Scholar 

  12. Metra M, Nodari S, Parrinello G, Specchia C, Brentana L, Rocca P, et al. The role of plasma biomarkers in acute heart failure. Serial changes and independent prognostic value of NT-proBNP and cardiac troponin-T. Eur J Heart Fail. 2007;9(8):776–86.

    Google Scholar 

  13. Noveanu M, Breidthardt T, Potocki M, Reichlin T, Twerenbold R, Uthoff H, et al. Direct comparison of serial B-type natriuretic peptide and NT-proBNP levels for prediction of short- and long-term outcome in acute decompensated heart failure. Crit Care. 2011;15(1):R1.

    Google Scholar 

  14. Di Somma S, Magrini L, Pittoni V, Marino R, Mastrantuono A, Ferri E, et al. In-hospital percentage BNP reduction is highly predictive for adverse events in patients admitted for acute heart failure: the Italian RED Study. Crit Care. 2010;14(3):R116.

    Google Scholar 

  15. Jan A, Murphy NF, O'Loughlin C, Ledwidge M, McDonald K. Profiling B-type natriuretic peptide in a stable heart failure population: a valuable adjunct to care. Ir J Med Sci. 2011;180(2):355–62.

    Article  PubMed  CAS  Google Scholar 

  16. Macheret F, Boerrigter G, McKie P, Costello-Boerrigter L, Lahr B, Heublein D, et al. Pro-B-type natriuretic peptide(1-108) circulates in the general community: plasma determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2011 Mar 22;57(12):1386–95.

  17. Gaggin HK, Mohammed AA, Bhardwaj A, Rehman SU, Gregory SA, Weiner RB, et al. Heart Failure Outcomes and Benefits of NT-proBNP-Guided Management in the Elderly: Results From the Prospective, Randomized ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) Study. J Card Fail. 2012 Aug;18(8):626–34.

  18. Valle R, Aspromonte N, Milani L, Peacock FW, Maisel AS, Santini M, et al. Optimizing fluid management in patients with acute decompensated heart failure (ADHF): the emerging role of combined measurement of body hydration status and brain natriuretic peptide (BNP) levels. Heart Fail Rev. 2011 Nov;16(6):519–29.

  19. • Januzzi Jr JL. The role of natriuretic peptide testing in guiding chronic heart failure management: review of available data and recommendations for use. Arch Cardiovasc Dis. 2012;105(1):40–50. This review provides insights into natriuretic peptide goal directed therapy in heart failure, highlighting the importance of reducing natriuretic peptide levels in order to chart progression of heart failure treatment.

    Article  PubMed  Google Scholar 

  20. Xu D, Chan WL, Leung BP, et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med. 1998;187:787–94.

    Article  PubMed  CAS  Google Scholar 

  21. Townsend MJ, Fallon PG, Matthews DJ, et al. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J Exp Med. 2000;191:1069–76.

    Article  PubMed  CAS  Google Scholar 

  22. Schmitz J, Owyeng A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–90.

    Article  PubMed  CAS  Google Scholar 

  23. Wang TJ, Wollert KC, Larson MG, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the framingham heart study. Circulation. 2012;126:1596–604.

    Article  PubMed  CAS  Google Scholar 

  24. Sanada S, Hakuno D, Higgins LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–49.

    Article  PubMed  CAS  Google Scholar 

  25. Oshikawa K, Kuroiwa K, Tago K, et al. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am J Respir Crit Care Med. 2001;164:277–81.

    Article  PubMed  CAS  Google Scholar 

  26. Oshikawa K, Yanagisawa K, Tominaga S, et al. ST2 protein induced by inflammatory stimuli can modulate acute lung inflammation. Biochem Biophys Res Commun. 2002;299:18–24.

    Article  PubMed  CAS  Google Scholar 

  27. Tajima S, Oshikawa K, Tominaga S, et al. The increase in serum soluble ST2 protein upon acute exacerbation of idiopathic pulmonary fibrosis. Chest. 2003;124:1206–14.

    Article  PubMed  CAS  Google Scholar 

  28. Oshikawa K, Kuroiwa K, Tokunaga T, et al. Acute eosinophilic pneumonia with increased soluble ST2 in serum and bronchoalveolar lavage fluid. Respir Med. 2001;95:532–3.

    Article  PubMed  CAS  Google Scholar 

  29. Martinez-Rumayor A, Camargo CA, Green SM, et al. Soluble ST2 plasma concentrations predict 1-year mortality in acutely dyspneic emergency department patients with pulmonary disease. Am J Clin Pathol. 2008;130:578–84.

    Article  PubMed  Google Scholar 

  30. Shimpo M, Morrow DA, Weinberg EO, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004;109:2186–90.

    Article  PubMed  CAS  Google Scholar 

  31. Dieplinger B, Januzzi Jr JL, Steinmair M, et al. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma–the Presage ST2 assay. Clin Chim Acta. 2009;409:33–40.

    Article  PubMed  CAS  Google Scholar 

  32. Weinberg EO, Shimpo M, Hurwitz S, et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107:721–6.

    Article  PubMed  Google Scholar 

  33. Shah RV, Chen-Tournoux AA, Picard MH, et al. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ Heart Fail. 2009;2:311–9.

    Article  PubMed  CAS  Google Scholar 

  34. Ky B, French B, McCloskey K, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4:180–7.

    Article  PubMed  Google Scholar 

  35. Bayes-Genis A, Pascual-Figal D, Januzzi JL, et al. Soluble ST2 monitoring provides additional risk stratification for outpatients with decompensated heart failure. Rev Esp Cardiol. 2010;63:1171–8.

    Article  PubMed  Google Scholar 

  36. Sabatine MS, Morrow DA, Higgins LJ, et al. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation. 2008;15(117):1936–44.

    Article  Google Scholar 

  37. Kohli P, Bonaca MP, Kakkar R, et al. Role of ST2 in non-ST-elevation acute coronary syndrome in the MERLIN-TIMI 36 trial. Clin Chem. 2012 Jan;58(1):257–66.

    Article  PubMed  CAS  Google Scholar 

  38. Weir RA, Miller AM, Murphy GE, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55:243–50.

    Article  PubMed  CAS  Google Scholar 

  39. Januzzi Jr JL, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.

    Article  PubMed  CAS  Google Scholar 

  40. Socrates T. deFilippi C, Reichlin T et al. Interleukin family member ST2 and mortality in acute dyspnoea. J Intern Med. 2010;268:493–500.

    Article  PubMed  CAS  Google Scholar 

  41. Shah KB, Kop WJ, Christenson RH, et al. Prognostic utility of ST2 in patients with acute dyspnea and preserved left ventricular ejection fraction. Clin Chem. 2011;57:874–82.

    Article  PubMed  CAS  Google Scholar 

  42. Daniels LB, Clopton P, Iqbal N, et al. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am Heart J. 2010;160:721–8.

    Article  PubMed  CAS  Google Scholar 

  43. White HD. Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol. 2011;57:2406–8.

    Article  PubMed  CAS  Google Scholar 

  44. McDonough JL, Arrell DK, Van Eyk JE. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res. 1999;84:9–20.

    Article  PubMed  CAS  Google Scholar 

  45. Hessel MH, Atsma DE, van der Valk EJ, et al. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. 2008;455:979–86.

    Article  PubMed  CAS  Google Scholar 

  46. Daubert MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag. 2010;6:691–9.

    PubMed  CAS  Google Scholar 

  47. Thygesen K, Mair J, Katus H, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J. 2010;31:2197–204.

    Article  PubMed  CAS  Google Scholar 

  48. Katz SD, Hryniewicz K, Hriljac I, et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005;111:310–4.

    Article  PubMed  Google Scholar 

  49. Kociol RD, Pang PS, Gheorghiade M, et al. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010;56:1071–8.

    Article  PubMed  CAS  Google Scholar 

  50. Januzzi JL, Filippatos G, Nieminen M, et al. Troponin elevation in patients with heart failure: on behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur Heart J. 2012;33:2265–71.

    Article  PubMed  CAS  Google Scholar 

  51. Missov M, Mair J. A novel biochemical approach to congestive heart failure: cardiac troponin T. Am Heart J. 1999;139:95–9.

    Article  Google Scholar 

  52. Latini R, Masson S, Anand IS, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation. 2007;116:1242–9.

    Article  PubMed  CAS  Google Scholar 

  53. Miller WL, Hartman KA, Burritt MF, et al. Serial biomarker measurements in ambulatory patients with chronic heart failure: the importance of change over time. Circulation. 2007;116:249–57.

    Article  PubMed  CAS  Google Scholar 

  54. Gattis WA, O'Connor CM, Hasselblad V, et al. Usefulness of an elevated troponin-I in predicting clinical events in patients admitted with acute heart failure and acute coronary syndrome (from the RITZ-4 trial). Am J Cardiol. 2004;93:1436–7.

    Article  PubMed  CAS  Google Scholar 

  55. Miller WL, Hartman KA, Burritt MF, et al. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J Am Coll Cardiol. 2009;54:1715–21.

    Article  PubMed  CAS  Google Scholar 

  56. Sundstrom J, Ingelsson E, Berglund L, et al. Cardiac troponin-I and risk of heart failure: a community-based cohort study. Eur Heart J. 2009;30:773–81.

    Article  PubMed  Google Scholar 

  57. Peacock WF, De Marco T, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26.

    Article  PubMed  CAS  Google Scholar 

  58. Biolo A, Fisch M, Balog J, et al. Episodes of acute heart failure syndrome are associated with increased levels of troponin and extracellular matrix markers. Circ Heart Fail. 2010;3:44–50.

    Article  PubMed  CAS  Google Scholar 

  59. You JJ, Austin PC, Alter DA, et al. Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am Heart J. 2007;153:462–70.

    Article  PubMed  CAS  Google Scholar 

  60. Metra M, Nodari S, Parrinello G, et al. The role of plasma biomarkers in acute heart failure: Serial changes and independent prognostic value of NT-proBNP and cardiac troponin-T. Eur J Heart Fail. 2007;9:776–86.

    Article  PubMed  CAS  Google Scholar 

  61. Xue Y, Clopton P, Peacock WF, et al. Serial changes in high-sensitive troponin predict outcome in patients with decompensated heart failure. Eur J Heart Fail. 2011;13:37–42.

    Article  PubMed  CAS  Google Scholar 

  62. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009 Sep;11(9):811–7.

  63. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a Marker of Cardiac Fibrosis, Predicts Incident Heart Failure in the Community. J Am Coll Cardiol. 2012 Oct 2;60(14):1249–56.

  64. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011 Feb;43(1):60–8.

  65. McCullough PA, Olobatoke A, Vanhecke TE. Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med. 2011;12(4):200–10.

    PubMed  Google Scholar 

  66. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010 Aug;12(8):826–32.

  67. La'ulu SL, Apple FS, Murakami MM, Ler R, Roberts WL, Straseski JA. Performance Characteristics of the ARCHITECT Galectin-3 Assay. Clin Biochem. 2013 Jan;46(1–2):119–22.

  68. Jougasaki M, Burnett Jr JC. Adrenomedullin: potential in physiology and pathophysiology. Life Sci. 2000;66:855–72.

    Article  PubMed  CAS  Google Scholar 

  69. Maisel A, Mueller C, Nowak R, Peacock WF, Landsberg JW, Ponikowski P, et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2010 May 11;55(19):2062–76.

  70. Maisel A, Mueller C, Nowak RM, Peacock WF, Ponikowski P, Mockel M, et al. Midregion prohormone adrenomedullin and prognosis in patients presenting with acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2011 Aug 30;58(10):1057–67.

  71. von Haehling S, Filippatos GS, Papassotiriou J, Cicoira M, Jankowska EA, Doehner W, et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010 May;12(5):484–91.

  72. Masson S, Latini R, Carbonieri E, Moretti L, Rossi MG, Ciricugno S, et al. The predictive value of stable precursor fragments of vasoactive peptides in patients with chronic heart failure: data from the GISSI-heart failure (GISSI-HF) trial. Eur J Heart Fail. 2010;12(4):338–47.

    Google Scholar 

  73. Morgenthaler NG, Struck J, Alonso C, Bergman A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–9.

    Article  PubMed  CAS  Google Scholar 

  74. Stoiser B et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Invest. 2006;36:771–8.

    Article  PubMed  CAS  Google Scholar 

  75. Szinnai G, Morgenthaler NG, Berneis K, et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J Clin Endocrinol Metab. 2007;92:3973–8.

    Article  PubMed  CAS  Google Scholar 

  76. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol. 2005;95:8B–13.

    Article  PubMed  CAS  Google Scholar 

  77. Voors AA, von Haehling S, Anker SD, et al. OPTIMA- AL Investigators. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur Heart J. 2009;30:1187–94.

    Article  PubMed  CAS  Google Scholar 

  78. Kelly D, Squire IB, Khan SQ, et al. C-terminal provasopressin (copeptin) is associated with left ventricular dysfunction, remo- deling, and clinical heart failure in survivors of myocardial infarction. J Card Fail. 2008;14:739–45.

    Article  PubMed  CAS  Google Scholar 

  79. Maisel A, Xue Y, Shah K, et al. Increased 90-Day Mortality in Patients With Acute Heart Failure With Elevated Copeptin: Secondary Results From the Biomarkers in Acute Heart Failure (BACH) Study. Circ Heart Fail. 2011;4:613–20.

    Article  PubMed  CAS  Google Scholar 

  80. Meijer E, Bakker SJ, Halbesma N, et al. Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort. Kidney Int. 2010;77:29–36.

    Article  PubMed  CAS  Google Scholar 

  81. Górriz Teruel JL, Beltrán CS. Assessment of renal function, iatrogenic hyperkalemia and acute renal dysfunction in cardiology. Contrast-induced nephropathy. Rev Esp Cardiol. 2011 Dec;64(12):1182–92.

  82. Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO, DiCapua P, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006 May 16;47(10):1987–96.

  83. •• Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardio-renal syndromes: Report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010;31:703–11. This review provides a good understanding of the underlying pathophysiology in patients with heart failure and concomitant renal dysfunction, namely the cardiorenal syndromes.

  84. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–209.

    Google Scholar 

  85. Iwanaga Y, Miyazaki S. Heart failure, chronic kidney disease, and biomarkers–an integrated viewpoint–. Circ J. 2010 Jul;74(7):1274–82.

  86. Ix JH, Shlipak MG, Chertow GM, Whooley MA. Association of cystatinC with mortality, cardiovascular events, and incident heart failure amongpersons with coronary heart disease: data from the Heart and Soul Study. Circulation. 2007;115:173–9.

    Article  PubMed  CAS  Google Scholar 

  87. Shlipak MG, Wassel Fyr CL, Chertow GM, Harris TB, Kritchevsky SB, Tylavsky FA, et al. Cystatin C and mortality risk in the elderly: the Health, Aging, and BodyComposition Study. J Am Soc Nephrol. 2006;17:254–61.

    Google Scholar 

  88. Shlipak MG, Katz R, Kestenbaum B, Fried LF, Siscovick D, Sarnak MJ. Clinical and subclinical cardiovascular disease and kidney function decline in the elderly. Atherosclerosis. 2009;204:298–303.

    Article  PubMed  CAS  Google Scholar 

  89. Koenig W, Twardella D, Brenner H, Rothenbacher D. Plasma concentrationsof cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: more than simply a marker of glomerular filtration rate. Clin Chem. 2005;51:321–7.

    Article  PubMed  CAS  Google Scholar 

  90. Lassus J, Harjola VP, Sund R, Siiril-Waris K, Melin J, Peuhkurinen K, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28:1841–7.

    Article  PubMed  CAS  Google Scholar 

  91. Carrasco-Sánchez FJ, Galisteo-Almeda L, Páez-Rubio I, Martínez-Marcos FJ, Camacho-Vázquez C, Ruiz-Frutos C, et al. Prognostic value of cystatin C on admission in heart failure with preserved ejection fraction. J Card Fail. 2011;17(1):31–8.

    Google Scholar 

  92. Patel PC, Ayers CR, Murphy SA, Peshock R, Khera A, de Lemos JA, et al. Association of cystatin C with left ventricular structure and function: The Dallas Heart Study. Circ Heart Fail. 2009;2:98–104.

    Article  PubMed  CAS  Google Scholar 

  93. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268:10425–32.

    PubMed  CAS  Google Scholar 

  94. Mishra J, Dent C, Tarabishi R, Tarabishi R, Mitsnefes M, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Google Scholar 

  95. Yndestad A, Landrø L, Ueland T, Dahl CP, Flo TH, Vinge LE, et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009 May;30(10):1229–36.

  96. Latouche C, El Moghrabi S, Messaoudi S, Nguyen Dinh Cat A, Hernandez-Diaz I, Alvarez de la Rosa D, et al. Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system. Hypertension. 2012;59(5):966–72.

    Google Scholar 

  97. Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011 Aug;13(8):846–51.

  98. Shrestha K, Shao Z, Singh D, Dupont M, Tang WH. Relation of systemic and urinary neutrophil gelatinase-associated lipocalin levels to different aspects of impaired renal function in patients with acute decompensated heart failure. Am J Cardiol. 2012 Nov 1;110(9):1329–35.

  99. Damman K, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL. Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. Eur J Heart Fail. 2008;10:997–1000.

    Article  PubMed  CAS  Google Scholar 

  100. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–63.

    Article  PubMed  CAS  Google Scholar 

  101. Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr. 2011;23:194–200.

    Article  PubMed  CAS  Google Scholar 

  102. Przybylowski P, Malyszko J, Kozlowska S, Malyszko JS. Kidney Injury Molecule-1 Correlates with Kidney Function in Heart Allograft Recipients. Transplant Proc. 2011;43:3061–3.

    Article  PubMed  CAS  Google Scholar 

  103. Éndre ZH, Pickering JW, Walker RJ, Devarajan P, et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int. 2011;79:1119–30.

    Article  PubMed  Google Scholar 

  104. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58:2301–9.

    Article  PubMed  CAS  Google Scholar 

  105. Nickolas TL, Schmidt-Ott KM, Canetta P, Forster C, Singer E, et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage. J Am Coll Cardiol. 2012;59:246–55.

    Article  PubMed  CAS  Google Scholar 

  106. Jungbauer CG, Birner C, Jung B, Buchner S, Lubnow M, von Bary C, et al. Kidney injury molecule-1 and N-acetyl-β-D-glucosaminidase in chronic heart failure: possible biomarkers of cardiorenal syndrome. Eur J Heart Fail. 2011 Oct;13(10):1104–10.

  107. Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate.. Damman K, Van Veldhuisen DJ, Navis G, Vaidya VS, Smilde TD, Westenbrink BD, Bonventre JV, Voors AA, Hillege HL. Heart. 2010 Aug;96(16):1297-302.

Download references

Acknowledgments

Research support for this paper was provided by Alere, Abbott, Nanosphere, Brahms-thermofisher, and Novartis.

Conflict of Interest

Punam Chowdhury declares that he has no conflict of interest.

Devin Kehl declares that he has no conflict of interest.

Rajiv Choudhary declares that he has no conflict of interest.

Alan Maisel has been a consultant for Alere, BG Medicine, and Critical Diagnostics; has received grant support from BG Medicine and Alere; has received payment for development of educational presentations including service on speakers’ bureaus for BG Medicine; and has received travel/accommodations expenses covered or reimbursed from multiple companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punam Chowdhury.

Additional information

This article is part of the Topical Collection on Congestive Heart Failure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, P., Kehl, D., Choudhary, R. et al. The Use of Biomarkers in the Patient with Heart Failure. Curr Cardiol Rep 15, 372 (2013). https://doi.org/10.1007/s11886-013-0372-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0372-4

Keywords

Navigation