Skip to main content

Advertisement

Log in

Update on Echocardiographic Assessment in Diabetes Mellitus

  • Echocardiography (JM Gardin, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is a well-recognized risk factor for cardiovascular diseases and cardiac death. While the increased mortality of patients with DM has traditionally been attributed to coronary artery disease, approximately half of the mortality has other causes, including non-ischemic heart failure (HF). In this context, effective screening and diagnosis of cardiac structural and functional abnormalities are crucial for preventive strategies and for predicting prognosis. This review discusses various echocardiographic diagnostic modalities, including tissue Doppler imaging (TDI) and two-dimensional (2D) speckle-tracking echocardiography (STE) for screening, risk stratification, and guidance of management of patients with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17 Suppl 1:S3–8.

    Article  PubMed  Google Scholar 

  2. Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.

    Article  CAS  PubMed  Google Scholar 

  3. Cortigiani L, Picano E. Stress echocardiography in diabetes. Stress echocardiography. Cham: Springer International Publishing; 2015. p. 521–9.

    Book  Google Scholar 

  4. Chou R, High Value Care Task Force of the American College of P. Cardiac screening with electrocardiography, stress echocardiography, or myocardial perfusion imaging: advice for high-value care from the American College of Physicians. Ann Intern Med. 2015;162:438–47.

    Article  PubMed  Google Scholar 

  5. National Cholesterol Education Program (NCEP) Expert Panel on Detection E, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.

    Google Scholar 

  6. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    Article  CAS  PubMed  Google Scholar 

  7. Young LH, Wackers FJ, Chyun DA, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care. 2003;26:2433–41.

    Article  PubMed  Google Scholar 

  9. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18:149–66.

    Article  PubMed  Google Scholar 

  10. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11:31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34:29–34.

    Article  CAS  PubMed  Google Scholar 

  12. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010;55:300–5.

    Article  Google Scholar 

  13. Das SR, Drazner MH, Yancy CW, Stevenson LW, Gersh BJ, Dries DL. Effects of diabetes mellitus and ischemic heart disease on the progression from asymptomatic left ventricular dysfunction to symptomatic heart failure: a retrospective analysis from the studies of left ventricular dysfunction (SOLVD) prevention trial. Am Heart J. 2004;148:883–8.

    Article  Google Scholar 

  14. Pham I, Cosson E, Nguyen MT, et al. Evidence for a specific diabetic cardiomyopathy: an observational retrospective echocardiographic study in 656 asymptomatic type 2 diabetic patients. Int J Endocrinol. 2015;2015:743503. This is a large observational study of middle-aged asymptomatic patients or moderate duration (14±8 years) and limited glycemic control (HbA1c 8.7±2.1%). Even after excluding patients with hypertension and quite extensive screening for CAD, diabetic cardiomyopathy was still highly prevalent.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Uusitupa MI, Mustonen JN, Airaksinen KE. Diabetic heart muscle disease. Ann Med. 1990;22:377–86.

    Article  CAS  PubMed  Google Scholar 

  16. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25:543–67.

    Article  CAS  PubMed  Google Scholar 

  17. Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy: evaluation by doppler echocardiography. J Am Coll Cardiol. 2006;48:1548–51.

    Article  PubMed  Google Scholar 

  18. Fang ZY, Yuda S, Anderson V, Short L, Case C, Marwick TH. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol. 2003;41:611–7.

    Article  CAS  PubMed  Google Scholar 

  19. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham heart study. JAMA. 1994;271:840–4.

    Article  CAS  PubMed  Google Scholar 

  20. Nichols GA, Reinier K, Chugh SS. Independent contribution of diabetes to increased prevalence and incidence of atrial fibrillation. Diabetes Care. 2009;32:1851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J Am Heart Assoc. 2013;2:e000102. The epidemic of atrial fibrillation continues relentlessly and wider use of a prediction score would help us to better understand risk. This score dervies from combination of individual-level data from 3 large cohorts (Atherosclerosis Risk in Communities [ARIC] study, the Cardiovascular Health Study [CHS], and the Framingham Heart Study [FHS]), including 18 556 men and women aged 46 to 94 years.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Camm AJ, Lip GYH, De Caterina R, et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation. An update of the 2010 ESC Guidelines for the management of atrial fibrillation developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 2012;33:2719–47.

    Article  PubMed  Google Scholar 

  23. Mohan M, McSwiggan S, Baig F, Rutherford L, Lang CC. Metformin and its effects on myocardial dimension and left ventricular hypertrophy in normotensive patients with coronary heart disease (the MET-REMODEL study): rationale and design of the MET-REMODEL study. Cardiovasc Drugs Ther. 2015;33:1–8.

    Article  CAS  Google Scholar 

  24. Al-Daydamony MM, El-Tahlawi M. What is the effect of metabolic syndrome without hypertension on left ventricular hypertrophy? Echocardiogram. 2016. doi:10.1111/echo.13247.

    Google Scholar 

  25. Eguchi K, Boden-Albala B, Jin Z, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008;101:1787–91.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Galderisi M, Anderson KM, Wilson PW, Levy D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol. 1991;68:85–9.

    Article  CAS  PubMed  Google Scholar 

  27. Lee M, Gardin JM, Lynch JC, et al. Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: the cardiovascular health study. Am Heart J. 1997;133:36–43.

    Article  CAS  PubMed  Google Scholar 

  28. Chowdhury EK, Jennings GL, Dewar E, Wing LM, Reid CM. Predictive performance of echocardiographic parameters for cardiovascular events among elderly treated hypertensive patients. Am J Hypertens. 2016;29:821–31.

    Article  PubMed  Google Scholar 

  29. dos Santos Silva CM, Gottlieb I, Volschan I, et al. Low frequency of cardiomyopathy using cardiac magnetic resonance imaging in an acromegaly contemporary cohort. J Clin Endocrinol Metab. 2015;100:4447–55.

    Article  PubMed  Google Scholar 

  30. Valente AM, Lakdawala NK, Powell AJ, et al. Comparison of echocardiographic and cardiac magnetic resonance imaging in hypertrophic cardiomyopathy sarcomere mutation carriers without left ventricular hypertrophy. Circ Cardiovasc Genet. 2013;6:230–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bogazzi F, Lombardi M, Strata E, et al. Effects of somatostatin analogues on acromegalic cardiomyopathy: results from a prospective study using cardiac magnetic resonance. J Endocrinol Investig. 2010;33:103–8.

    Article  CAS  Google Scholar 

  32. von Bibra H, St John Sutton M. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia. 2010;53:1033–45.

    Article  Google Scholar 

  33. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2016;29:277–314.

    Article  PubMed  Google Scholar 

  34. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R. Strain and strain rate imaging by echocardiography—basic concepts and clinical applicability. Curr Cardiol Rev. 2009;5:133–48.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mochizuki Y, Tanaka H, Matsumoto K, et al. Clinical features of subclinical left ventricular systolic dysfunction in patients with diabetes mellitus. Cardiovasc Diabetol. 2015;14:37.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: Is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr. 2011;24:1268–75. e1.

    Article  PubMed  Google Scholar 

  37. Ng ACT, Delgado V, Bertini M, et al. Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol. 2009;104:1398–401.

    Article  PubMed  Google Scholar 

  38. Li RJ, Yang J, Yang Y, et al. Speckle tracking echocardiography in the diagnosis of early left ventricular systolic dysfunction in type II diabetic mice. BMC Cardiovasc Disord. 2014;14:141.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28:183–93.

    Article  PubMed  Google Scholar 

  40. Huynh QL, Kalam K, Iannaccone A, Negishi K, Thomas L, Marwick TH. Functional and anatomic responses of the left atrium to change in estimated left ventricular filling pressure. J Am Soc Echocardiogr. 2015;28:1428–33. e1.

    Article  Google Scholar 

  41. Kosmala W, Saito M, Kaye G, et al. Incremental value of left atrial structural and functional characteristics for prediction of atrial fibrillation in patients receiving cardiac pacing. Circ Cardiovasc Imaging. 2015;8:4.

    Article  Google Scholar 

  42. Muranaka A, Yuda S, Tsuchihashi K, et al. Quantitative assessment of left ventricular and left atrial functions by strain rate imaging in diabetic patients with and without hypertension. Echocardiogram. 2009;26:262–71.

    Article  Google Scholar 

  43. Mondillo S, Cameli M, Caputo ML, et al. Early detection of left atrial strain abnormalities by speckle-tracking in hypertensive and diabetic patients with normal left atrial size. J Am Soc Echocardiogr. 2011;24:898–908.

    Article  PubMed  Google Scholar 

  44. Yuda S, Muranaka A, Miura T. Clinical implications of left atrial function assessed by speckle tracking echocardiography. J Echocardiogr. 2016. doi:10.1007/s12574-016-0283-7.

    PubMed  Google Scholar 

  45. Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014;63:493–505.

    Article  PubMed  Google Scholar 

  46. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016. doi:10.1093/eurheartj/ehv728.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Marwick.

Ethics declarations

Conflict of Interest

Ying Wang and Thomas H. Marwick declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Marwick, T.H. Update on Echocardiographic Assessment in Diabetes Mellitus. Curr Cardiol Rep 18, 85 (2016). https://doi.org/10.1007/s11886-016-0759-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0759-0

Keywords

Navigation