Skip to main content
Log in

Therapeutic Approach to Calcified Coronary Lesions: Disruptive Technologies

  • Interventional Cardiology (SR Bailey and T Helmy, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Moderate or severe calcification is present in approximately one third of coronary lesions in patients with stable ischemic heart disease and acute coronary syndromes and portends unfavorable procedural results and long-term outcomes. In this review, we provide an overview on the state-of-the-art in evaluation and treatment of calcified coronary lesions.

Recent Findings

Intravascular imaging (intravascular ultrasound or optical coherence tomography) can guide percutaneous coronary intervention of severely calcified lesions. New technologies such as orbital atherectomy and intravascular lithotripsy have significantly expanded the range of available techniques to effectively modify coronary calcium and facilitate stent expansion.

Summary

Calcium fracture improves lesion compliance and is essential to optimize stent implantation. Intravascular imaging allows for detailed assessment of patterns and severity of coronary calcium that are integrated into scoring systems to predict stent expansion, identifying which lesions require atherectomy for lesion modification. Guided by intravascular imaging, older technologies such as rotational atherectomy and excimer laser can be incorporated with newer technologies such as orbital atherectomy and intravascular lithotripsy into an algorithmic approach for the safe and effective treatment of patients with heavily calcified coronary lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging. 2018;11(1):127–42. https://doi.org/10.1016/j.jcmg.2017.10.012.

    Article  Google Scholar 

  2. Huisman J, van der Heijden LC, Kok MM, Danse PW, Jessurun GA, Stoel MG, et al. Impact of severe lesion calcification on clinical outcome of patients with stable angina, treated with newer generation permanent polymer-coated drug-eluting stents: a patient-level pooled analysis from TWENTE and DUTCH PEERS (TWENTE II). Am Heart J. 2016;175:121–9. https://doi.org/10.1016/j.ahj.2016.02.012.

    Article  CAS  PubMed  Google Scholar 

  3. Copeland-Halperin RS, Baber U, Aquino M, Rajamanickam A, Roy S, Hasan C, et al. Prevalence, correlates, and impact of coronary calcification on adverse events following PCI with newer-generation DES: findings from a large multiethnic registry. Catheter Cardiovasc Interv. 2018;91(5):859–66. https://doi.org/10.1002/ccd.27204.

    Article  PubMed  Google Scholar 

  4. Bourantas CV, Zhang YJ, Garg S, Iqbal J, Valgimigli M, Windecker S, et al. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials. Heart. 2014;100(15):1158–64. https://doi.org/10.1136/heartjnl-2013-305180.

    Article  PubMed  Google Scholar 

  5. Wang X, Matsumura M, Mintz GS, Lee T, Zhang W, Cao Y, et al. In vivo calcium detection by comparing optical coherence tomography, intravascular ultrasound, and angiography. JACC Cardiovasc Imaging. 2017;10(8):869–79. https://doi.org/10.1016/j.jcmg.2017.05.014Intravascular imaging study correlating angiographically visible and invisible calcium with intravascular imaging and their impact on stent expansion.

    Article  CAS  PubMed  Google Scholar 

  6. Vavuranakis M, Toutouzas K, Stefanadis C, Chrisohou C, Markou D, Toutouzas P. Stent deployment in calcified lesions: can we overcome calcific restraint with high-pressure balloon inflations? Catheter Cardiovasc Interv. 2001;52(2):164–72. https://doi.org/10.1002/1522-726x(200102)52:2<164::aid-ccd1041>3.0.co;2-s.

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi Y, Okura H, Kume T, Yamada R, Kobayashi Y, Fukuhara K, et al. Impact of target lesion coronary calcification on stent expansion. Circ J. 2014;78(9):2209–14. https://doi.org/10.1253/circj.cj-14-0108.

    Article  PubMed  Google Scholar 

  8. Ali ZA, Karimi Galougahi K, Maehara A, Shlofmitz RA, Ben-Yehuda O, Mintz GS, et al. Intracoronary optical coherence tomography 2018: current status and future directions. JACC Card Interv. 2017;10(24):2473–87. https://doi.org/10.1016/j.jcin.2017.09.042.

    Article  Google Scholar 

  9. Fujino A, Mintz GS, Matsumura M, Lee T, Kim SY, Hoshino M, et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention. 2018;13(18):e2182–e9. https://doi.org/10.4244/EIJ-D-17-00962This study introduces a novel OCT scoring system to predict stent expansion in calcified plaques.

    Article  PubMed  Google Scholar 

  10. Ali ZA, Galougahi KK. Shining light on calcified lesions, plaque stabilisation and physiologic significance: new insights from intracoronary OCT. EuroIntervention. 2018;13(18):e2105–e8. https://doi.org/10.4244/EIJV13I18A346.

    Article  PubMed  Google Scholar 

  11. Zhang M, Matsumura M, Usui E, Noguchi M, Fujimura T, Fall K, et al. IVUS predictors of stent expansion in severely calcified lesions. J Am Coll Cardiol. 2019;74(13):B51 This study devises and validates an IVUS scoring system to predict stent expansion in calcified plaques.

    Article  Google Scholar 

  12. Tang Z, Bai J, Su SP, Wang Y, Liu MH, Bai QC, et al. Cutting-balloon angioplasty before drug-eluting stent implantation for the treatment of severely calcified coronary lesions. J Ger Cardiol. 2014;11(1):44–9. https://doi.org/10.3969/j.issn.1671-5411.2014.01.012.

    Article  Google Scholar 

  13. Sugawara Y, Ueda T, Soeda T, Watanabe M, Okura H, Saito Y. Plaque modification of severely calcified coronary lesions by scoring balloon angioplasty using Lacrosse non-slip element: insights from an optical coherence tomography evaluation. Cardiovasc Interv Ther. 2019;34(3):242–8. https://doi.org/10.1007/s12928-018-0553-6.

    Article  PubMed  Google Scholar 

  14. Okura H, Hayase M, Shimodozono S, Kobayashi T, Sano K, Matsushita T, et al. Mechanisms of acute lumen gain following cutting balloon angioplasty in calcified and noncalcified lesions: an intravascular ultrasound study. Catheter Cardiovasc Interv. 2002;57(4):429–36. https://doi.org/10.1002/ccd.10344.

    Article  PubMed  Google Scholar 

  15. Abdel-Wahab M, Toelg R, Byrne RA, Geist V, El-Mawardy M, Allali A, et al. High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions. Circ Card Interv. 2018;11(10):e007415. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007415A randomized trial comparing cutting or scoring balloons versus rotational atherectomy in severely calcified coronary lesions.

    Article  Google Scholar 

  16. Abdel-Wahab M, Richardt G, Joachim Buttner H, Toelg R, Geist V, Meinertz T, et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial. JACC Card Interv. 2013;6(1):10–9. https://doi.org/10.1016/j.jcin.2012.07.017A randomised clinical trial of rotational atherectomy versus balloon angioplasty and their impact on procedural success and post-procedural outcomes.

    Article  Google Scholar 

  17. Tomey MI, Sharma SK. Interventional options for coronary artery calcification. Curr Cardiol Rep. 2016;18(2):12. https://doi.org/10.1007/s11886-015-0691-8.

    Article  PubMed  Google Scholar 

  18. Mintz GS, Potkin BN, Keren G, Satler LF, Pichard AD, Kent KM, et al. Intravascular ultrasound evaluation of the effect of rotational atherectomy in obstructive atherosclerotic coronary artery disease. Circulation. 1992;(5):86, 1383–1393. https://doi.org/10.1161/01.cir.86.5.1383The first IVUS study to describe the impact of rotational atherectomy on coronary calcified lesions.

  19. Yamamoto MH, Maehara A, Karimi Galougahi K, Mintz GS, Parviz Y, Kim SS, et al. Mechanisms of orbital versus rotational atherectomy plaque modification in severely calcified lesions assessed by optical coherence tomography. JACC Card Interv. 2017;10(24):2584–6. https://doi.org/10.1016/j.jcin.2017.09.031A mechanistic study comparing the effects of orbital atherectomy versus rotational atherectomy on calcified plaques by OCT.

    Article  Google Scholar 

  20. Kim SS, Yamamoto MH, Maehara A, Sidik N, Koyama K, Berry C, et al. Intravascular ultrasound assessment of the effects of rotational atherectomy in calcified coronary artery lesions. Int J Card Imaging. 2018;34(9):1365–71. https://doi.org/10.1007/s10554-018-1352-y.

    Article  Google Scholar 

  21. Genereux P, Lee AC, Kim CY, Lee M, Shlofmitz R, Moses JW, et al. Orbital atherectomy for treating de novo severely calcified coronary narrowing (1-year results from the Pivotal ORBIT II Trial). Am J Cardiol. 2015;115(12):1685–90. https://doi.org/10.1016/j.amjcard.2015.03.009.

    Article  PubMed  Google Scholar 

  22. Lee MS, Shlofmitz E, Kong J, Srivastava PK, Al Yaseen S, Sosa FA, et al. Outcomes of patients with severely calcified aorto-ostial coronary lesions who underwent orbital atherectomy. J Interv Cardiol. 2018;31(1):15–20. https://doi.org/10.1111/joic.12432.

    Article  PubMed  Google Scholar 

  23. Redfors B, Sharma SK, Saito S, Kini AS, Lee AC, Moses JW, et al. Novel Micro Crown orbital atherectomy for severe lesion calcification: Coronary Orbital Atherectomy System Study (COAST). Circ Card Interv. 2020;13(8):e008993. https://doi.org/10.1161/CIRCINTERVENTIONS.120.008993A non-randomized study that introduces the novel Micro Crown system for orbital atherectomy and compares the procedural success and post-procedural outcomes with data from the ORBIT II study.

    Article  CAS  Google Scholar 

  24. Karimi Galougahi K, Shlofmitz RA, Ben-Yehuda O, Genereux P, Maehara A, Mintz GS, et al. Guiding light: insights into atherectomy by optical coherence tomography. JACC Card Interv. 2016;9(22):2362–3. https://doi.org/10.1016/j.jcin.2016.09.028.

    Article  Google Scholar 

  25. Kubo T, Shimamura K, Ino Y, Yamaguchi T, Matsuo Y, Shiono Y, et al. Superficial calcium fracture after PCI as assessed by OCT. JACC Cardiovasc Imaging. 2015;8(10):1228–9. https://doi.org/10.1016/j.jcmg.2014.11.012.

    Article  PubMed  Google Scholar 

  26. Maejima N, Hibi K, Saka K, Akiyama E, Konishi M, Endo M, et al. Relationship between thickness of calcium on optical coherence tomography and crack formation after balloon dilatation in calcified plaque requiring rotational atherectomy. Circ J. 2016;80(6):1413–9. https://doi.org/10.1253/circj.CJ-15-1059A mechanistic study assessing the formation of calcium fracture post rotational atherectomy and balloon dilatation by OCT.

    Article  PubMed  Google Scholar 

  27. Yamamoto MH, Maehara A, Kim SS, Koyama K, Kim SY, Ishida M, et al. Effect of orbital atherectomy in calcified coronary artery lesions as assessed by optical coherence tomography. Catheter Cardiovasc Interv. 2019;93(7):1211–8. https://doi.org/10.1002/ccd.27902.

    Article  PubMed  Google Scholar 

  28. Karimi Galougahi K, Bhatti N, Shlofmitz R, Généreux P, Moses J, Kirtane A, et al. Effects of orbital versus rotational atherectomy facilitated PCI on the coronary microcirculation. J Am Coll Cardiol. 2016;68(18):B96.

    Article  Google Scholar 

  29. Adams GL, Khanna PK, Staniloae CS, Abraham JP, Sparrow EM. Optimal techniques with the Diamondback 360 degrees System achieve effective results for the treatment of peripheral arterial disease. J Cardiovasc Transl Res. 2011;4(2):220–9. https://doi.org/10.1007/s12265-010-9255-x.

    Article  PubMed  Google Scholar 

  30. Koster R, Kahler J, Brockhoff C, Munzel T, Meinertz T. Laser coronary angioplasty: history, present and future. Am J Cardiovasc Drugs. 2002;2(3):197–207. https://doi.org/10.2165/00129784-200202030-00006.

    Article  PubMed  Google Scholar 

  31. Baumbach A, Haase KK, Rose C, Oberhoff M, Hanke H, Karsch KR. Formation of pressure waves during in vitro excimer laser irradiation in whole blood and the effect of dilution with contrast media and saline. Lasers Surg Med. 1994;14(1):3–6. https://doi.org/10.1002/lsm.1900140104.

    Article  CAS  PubMed  Google Scholar 

  32. Mintz GS, Kovach JA, Javier SP, Pichard AD, Kent KM, Popma JJ, et al. Mechanisms of lumen enlargement after excimer laser coronary angioplasty. An intravascular ultrasound study. Circulation. 1995;92(12):3408–14. https://doi.org/10.1161/01.cir.92.12.3408.

    Article  CAS  PubMed  Google Scholar 

  33. Ambrosini V, Sorropago G, Laurenzano E, Golino L, Casafina A, Schiano V, et al. Early outcome of high energy Laser (Excimer) facilitated coronary angioplasty ON hARD and complex calcified and balloOn-resistant coronary lesions: LEONARDO Study. Cardiovasc Revasc Med. 2015;16(3):141–6. https://doi.org/10.1016/j.carrev.2015.02.002.

    Article  PubMed  Google Scholar 

  34. Fernandez JP, Hobson AR, McKenzie D, Shah N, Sinha MK, Wells TA, et al. Beyond the balloon: excimer coronary laser atherectomy used alone or in combination with rotational atherectomy in the treatment of chronic total occlusions, non-crossable and non-expansible coronary lesions. EuroIntervention. 2013;9(2):243–50. https://doi.org/10.4244/EIJV9I2A40.

    Article  PubMed  Google Scholar 

  35. Ali ZA, Nef H, Escaned J, Werner N, Banning AP, Hill JM, et al. Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses: the Disrupt CAD II study. Circ Card Interv. 2019;12(10):e008434. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008434A non-randomized study assessing the safety and efficacy of intravascular lithotripsy in moderate or severely calcified lesions.

    Article  CAS  Google Scholar 

  36. Karimi Galougahi K, Patel S, Shlofmitz R, Maehara A, Kereiakes DJ, Hill JM, et al. Calcific plaque modification by acoustic shockwaves - intravascular lithotripsy in coronary interventions. Circulat: CardiovascInter. 2020 (In press). https://doi.org/10.1161/CIRCINTERVENTIONS.120.009354A comprehensive review on the state-of-the-art of lithotripsy in coronary arteries, including the physics and mechanism of the action of the device.

  37. Cleveland RO, Mc Ateer JA. The physics of shock wave lithotripsy. Smith’s textbook of endourology. 3rd ed. Hoboken: Wiley-Blackwell; 2012. p. 527–58.

    Google Scholar 

  38. Brinton TJ, Ali ZA, Hill JM, Meredith IT, Maehara A, Illindala U, et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses. Circulation. 2019;139(6):834–6. https://doi.org/10.1161/circulationaha.118.036531.

    Article  PubMed  Google Scholar 

  39. Ali ZA, Brinton TJ, Hill JM, Maehara A, Matsumura M, Karimi Galougahi K, et al. Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description. JACC Cardiovasc Imaging. 2017;10(8):897–906. https://doi.org/10.1016/j.jcmg.2017.05.012First description of the effects of intravascular lithotripsy on coronary calcification by OCT.

    Article  PubMed  Google Scholar 

  40. Kini AS, Vengrenyuk Y, Pena J, Motoyama S, Feig JE, Meelu OA, et al. Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions. Catheter Cardiovasc Interv. 2015;86(6):1024–32. https://doi.org/10.1002/ccd.26000.

    Article  PubMed  Google Scholar 

  41. Chambers JW, Feldman RL, Himmelstein SI, Bhatheja R, Villa AE, Strickman NE, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Card Interv. 2014;7(5):510–8. https://doi.org/10.1016/j.jcin.2014.01.158A single-arm study describing the safety and efficacy of the “Classic Crown” orbital atherectomy system in treatment of severely calcified coronary artery lesions.

    Article  Google Scholar 

  42. Hill JM, Kereiakes DJ, Shlofmitz RA, Klein AJ, Riley RF, Price MJ, et al. Intravascular lithotripsy for treatment of severely calcified coronary artery disease: the Disrupt CAD III Study. J Am Coll Cardiol. 2020;76(22):2635–46. https://doi.org/10.1016/j.jacc.2020.09.603The largest study to-date assessing the safety and efficacy of intravascular lithotripsy in moderate or severely calcified coronary lesions, which was designed for premarketing approval of the device in the US.

    Article  CAS  PubMed  Google Scholar 

  43. Ielasi A, Loffi M, De Blasio G, Tespili M. “Rota-tripsy”: a successful combined approach for the treatment of a long and heavily calcified coronary lesion. Card Rev Med. 2019;21(11S):152–4. https://doi.org/10.1016/j.carrev.2019.12.023.

    Article  Google Scholar 

  44. Kang SJ, Mintz GS, Akasaka T, Park DW, Lee JY, Kim WJ, et al. Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug-eluting stent implantation. Circulation. 2011;123(25):2954–63. https://doi.org/10.1161/CIRCULATIONAHA.110.988436.

    Article  CAS  PubMed  Google Scholar 

  45. Song L, Mintz GS, Yin D, Yamamoto MH, Chin CY, Matsumura M, et al. Neoatherosclerosis assessed with optical coherence tomography in restenotic bare metal and first- and second-generation drug-eluting stents. Int J Card Imaging. 2017;33(8):1115–24. https://doi.org/10.1007/s10554-017-1106-2.

    Article  Google Scholar 

  46. Song L, Mintz GS, Yin D, Yamamoto MH, Chin CY, Matsumura M, et al. Characteristics of early versus late in-stent restenosis in second-generation drug-eluting stents: an optical coherence tomography study. EuroIntervention. 2017;13(3):294–302. https://doi.org/10.4244/EIJ-D-16-00787.

    Article  PubMed  Google Scholar 

  47. Dong Y, Mintz G, Song L, Tetsumin L, Kirtane AJ, Parikh M, et al. In-stent restenosis lesion morphology related to new stent underexpansion as evaluated by optical coherence tomography. J Am Coll Cardiol. 2017;70(Supplement 1).

  48. Secco GG, Buettner A, Parisi R, Pistis G, Vercellino M, Audo A, et al. Clinical experience with very high-pressure dilatation for resistant coronary lesions. Cardiovasc Revasc Med. 2019;20(12):1083–7. https://doi.org/10.1016/j.carrev.2019.02.026.

    Article  PubMed  Google Scholar 

  49. Latib A, Takagi K, Chizzola G, Tobis J, Ambrosini V, Niccoli G, et al. Excimer Laser LEsion modification to expand non-dilatable stents: the ELLEMENT registry. Cardiovasc Revasc Med. 2014;15(1):8–12. https://doi.org/10.1016/j.carrev.2013.10.005.

    Article  PubMed  Google Scholar 

  50. Lee T, Shlofmitz RA, Song L, Tsiamtsiouris T, Pappas T, Madrid A, et al. The effectiveness of excimer laser angioplasty to treat coronary in-stent restenosis with peri-stent calcium as assessed by optical coherence tomography. EuroIntervention. 2019;15(3):e279–e88. https://doi.org/10.4244/eij-d-18-00139An OCT study in a cohort of patients with in-stent restenosis implanted in severely calcified lesions treated by Excimer laser coronary atherectomy.

    Article  PubMed  Google Scholar 

  51. Hachinohe D, Kashima Y, Hirata K, Kanno D, Kobayashi K, Kaneko U, et al. Treatment for in-stent restenosis requiring rotational atherectomy. J Interv Cardiol. 2018;31(6):747–54. https://doi.org/10.1111/joic.12558.

    Article  PubMed  Google Scholar 

  52. Ali ZA, McEntegart M, Hill JM, Spratt JC. Intravascular lithotripsy for treatment of stent underexpansion secondary to severe coronary calcification. Eur Heart J. 2020;41(3):485–6. https://doi.org/10.1093/eurheartj/ehy747.

    Article  PubMed  Google Scholar 

  53. Tovar Forero MN, Wilschut J, Van Mieghem NM, Daemen J. Coronary lithoplasty: a novel treatment for stent underexpansion. Eur Heart J. 2019;40(2):221. https://doi.org/10.1093/eurheartj/ehy593.

    Article  PubMed  Google Scholar 

  54. Alfonso F, Bastante T, Antuna P, de la Cuerda F, Cuesta J, Garcia-Guimaraes M, et al. Coronary lithoplasty for the treatment of undilatable calcified de novo and in-stent restenosis lesions. JACC Card Interv. 2019;12(5):497–9. https://doi.org/10.1016/j.jcin.2018.12.025.

    Article  Google Scholar 

  55. Sulimov DS, Abdel-Wahab M, Toelg R, Kassner G, Geist V, Richardt G. Stuck rotablator: the nightmare of rotational atherectomy. EuroIntervention. 2013;9(2):251–8. https://doi.org/10.4244/EIJV9I2A41.

    Article  PubMed  Google Scholar 

  56. Bittl JA, Ryan TJ Jr, Keaney JF Jr, Tcheng JE, Ellis SG, Isner JM, et al. Coronary artery perforation during excimer laser coronary angioplasty. The percutaneous Excimer Laser Coronary Angioplasty Registry. J Am Coll Cardiol. 1993;21(5):1158–65. https://doi.org/10.1016/0735-1097(93)90240-2.

    Article  CAS  PubMed  Google Scholar 

  57. Yeoh J, Cottens D, Cosgrove C, Mallek K, Strange J, Anderson R, et al. Management of stent underexpansion using intravascular lithotripsy-defining the utility of a novel device. 2020;97:22–9. https://doi.org/10.1002/ccd.28715.

  58. Genereux P, Madhavan MV, Mintz GS, Maehara A, Palmerini T, Lasalle L, et al. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) and ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) TRIALS. J Am Coll Cardiol. 2014;63(18):1845–54. https://doi.org/10.1016/j.jacc.2014.01.034A pooled meta-analysis of 2 randomized trials assessing the prevalence and impact of moderately or severely calcified lesions in acute coronary syndromes.

    Article  PubMed  Google Scholar 

  59. Carrick D, Oldroyd KG, McEntegart M, Haig C, Petrie MC, Eteiba H, et al. A randomized trial of deferred stenting versus immediate stenting to prevent no- or slow-reflow in acute ST-segment elevation myocardial infarction (DEFER-STEMI). J Am Coll Cardiol. 2014;63(20):2088–98. https://doi.org/10.1016/j.jacc.2014.02.530.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Beohar N, Kaltenbach LA, Wojdyla D, Pineda AM, Rao SV, Stone GW, et al. Trends in usage and clinical outcomes of coronary atherectomy: a report from the National Cardiovascular Data Registry CathPCI Registry. Circ Card Interv. 2020;13(2):e008239. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008239.

    Article  Google Scholar 

  61. Mathias W Jr, Tsutsui JM, Tavares BG, Fava AM, Aguiar MOD, Borges BC, et al. Sonothrombolysis in ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Am Coll Cardiol. 2019;73(22):2832–42. https://doi.org/10.1016/j.jacc.2019.03.006.

    Article  PubMed  Google Scholar 

  62. Patel S, Madhavan MV, Spina R, Figtree GA, Karimi GK. Deferred Intravascular lithotripsy-facilitated stenting in ACS – novel approach to improve PCI outcomes in severe calcification? J Am Coll Cardiol Case Rep. 2020;2(11):1700–1.

    Google Scholar 

  63. Kelbaek H, Hofsten DE, Kober L, Helqvist S, Klovgaard L, Holmvang L, et al. Deferred versus conventional stent implantation in patients with ST-segment elevation myocardial infarction (DANAMI 3-DEFER): an open-label, randomised controlled trial. Lancet. 2016;387(10034):2199–206. https://doi.org/10.1016/S0140-6736(16)30072-1.

    Article  PubMed  Google Scholar 

  64. Lonborg J, Engstrom T, Ahtarovski KA, Nepper-Christensen L, Helqvist S, Vejlstrup N, et al. Myocardial damage in patients with deferred stenting after STEMI: a DANAMI-3-DEFER Substudy. J Am Coll Cardiol. 2017;69(23):2794–804. https://doi.org/10.1016/j.jacc.2017.03.601.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad A. Ali.

Ethics declarations

Conflict of Interest

Keyvan Karimi Galougahi: none. Evan Shlofmitz: consultant—Abbott Vascular, Opsens Medical. Allen Jeremias: institutional funding (unrestricted education grant) and serves as a consultant for Volcano/Philips and Abbott Vascular; consultant to ACIST Medical and Boston Scientific. Shawnbir Gogia: none. Ajay J. Kirtane: institutional funding to Columbia University and/or Cardiovascular Research Foundation from Medtronic, Boston Scientific, Abbott Vascular, Abiomed, CSI, CathWorks, Siemens, Philips, and ReCor Medical. In addition to research grants, institutional funding includes fees paid to Columbia University and/or Cardiovascular Research Foundation for speaking engagements and/or consulting; no speaking/consulting fees were personally received. Personal: travel expenses/meals from Medtronic, Boston Scientific, Abbott Vascular, Abiomed, CSI, CathWorks, Siemens, Philips, ReCor Medical, Chiesi, OpSens, Zoll, and Regeneron. Jonathan M. Hill: personal fees grants and equity in Shockwave Medical, personal fees and grants from Abbott Vascular, personal fees and grants from Boston Scientific, and personal fees and grants from Abiomed. Dimitri Karmpaliotis: honoraria—Abiomed, Abbott Vascular, Boston Scientific; equity: Saranas, Soundbite, Traverse Vascular. Gary S. Mintz: honoraria—Boston Scientific, Philips, Terumo, and Medtronic. Akiko Maehara: grant support from Abbott Vascular and Boston Scientific, consultant for Conavi Medical Inc. Gregg W. Stone: speaker or other honoraria from Cook, Terumo, QOOL Therapeutics, and Orchestra Biomed; consultant to Valfix, TherOx, Vascular Dynamics, Robocath, HeartFlow, Gore, Ablative Solutions, Miracor, Neovasc, V-Wave, Abiomed, Ancora, MAIA Pharmaceuticals, Vectorious, Reva, Matrizyme, Cardiomech; equity/options from Ancora, QOOL Therapeutics, Cagent, Applied Therapeutics, Biostar family of funds, SpectraWave, Orchestra Biomed, Aria, Cardiac Success, MedFocus family of funds, and Valfix. Richard A. Shlofmitz: speaker—Shockwave. Ziad A. Ali: institutional research grants to Columbia University—Abbott, Cardiovascular Systems Inc.; consultant—Abbott, Abiomed, AstraZeneca, Shockwave.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Interventional Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi Galougahi, K., Shlofmitz, E., Jeremias, A. et al. Therapeutic Approach to Calcified Coronary Lesions: Disruptive Technologies. Curr Cardiol Rep 23, 33 (2021). https://doi.org/10.1007/s11886-021-01458-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01458-7

Keywords

Navigation