Skip to main content

Advertisement

Log in

Role of Senescent Renal Cells in Pathophysiology of Diabetic Kidney Disease

  • Microvascular Complications—Nephropathy (B Roshanravan, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetic kidney disease (DKD) is the leading cause of kidney failure in the USA, representing ~ 44% of all cases of kidney failure. Advancements in both glucose management and inhibitors of the renin-angiotensin system have significantly improved prognosis for individuals with DKD, yet DKD continues to affect 30–40% of people with type 2 diabetes and is still a major predictor of mortality in this population. Thus, new interventions are required to address this significant health burden.

Recent Findings

One potential target for intervention is cellular senescence. Senescence permanently arrests cell division in response to genotoxic, oncogenic, or metabolic stresses—coupled to the secretion of inflammatory cytokines, chemokines, growth factors, proteases, and other molecules that can have potent local and systemic effects. This senescence-associated secretory phenotype (SASP) explains how a relatively small number of senescent cells can promote pathology, and a growing number of degenerative conditions have been found to be caused or aggravated by senescent cells. Many SASP factors are also associated with loss of kidney function. Targeted elimination of senescent cells prevents the development of several degenerative pathologies. Since senescent cells appear in the proximal tubules and podocytes of patients with DKD, they are an appealing target for intervention in these disorders.

Summary

Here, we review the current literature linking senescence to DKD and speculate on the likely routes to intervention in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. Jama. 2011;305(24):2532–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. KDOQI. Clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154.

    Google Scholar 

  4. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  PubMed  CAS  Google Scholar 

  5. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  PubMed  CAS  Google Scholar 

  6. Gaede P, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  PubMed  CAS  Google Scholar 

  7. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  PubMed  CAS  Google Scholar 

  8. Group, A.C, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  9. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  PubMed  CAS  Google Scholar 

  11. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24(22):2463–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Coppe JP, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.

    Article  PubMed  CAS  Google Scholar 

  13. Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133(6):1019–31.

    Article  PubMed  CAS  Google Scholar 

  14. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18.

    Article  PubMed  CAS  Google Scholar 

  15. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-inhuman, open-label, pilot study. EBioMedicine. 2019;40:554–63.

  18. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C et al. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight. 2019;4(24):e130056.

  20. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354(6311):472–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wiley CD, Liu S, Limbad C, Zawadzka AM, Beck J, Demaria M, et al. SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. Cell Rep. 2019;28(13):3329–37 e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562(7728):578–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM, Hachfeld CM et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019:e12950.

  25. Aguayo-Mazzucato C, Andle J, Lee TB Jr, Midha A, Talemal L, Chipashvili V, et al. Acceleration of beta cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 2019;30(1):129–42 e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Thompson PJ, Shah A, Ntranos V, van Gool F, Atkinson M, Bhushan A. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 2019;29(5):1045–60 e10.

    Article  PubMed  CAS  Google Scholar 

  27. Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F, et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2008;295(5):F1563–73.

    Article  PubMed  CAS  Google Scholar 

  28. Kitada K, Nakano D, Ohsaki H, Hitomi H, Minamino T, Yatabe J, et al. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J Diabetes Complicat. 2014;28(5):604–11.

    Article  Google Scholar 

  29. Satriano J, Mansoury H, Deng A, Sharma K, Vallon V, Blantz RC, et al. Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. Am J Physiol Cell Physiol. 2010;299(2):C374–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Brosius FC 3rd, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2009;20(12):2503–12.

    Article  PubMed  Google Scholar 

  31. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23(2):303–14.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang B, Cui S, Bai X, Zhuo L, Sun X, Hong Q, et al. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age (Dordr). 2013;35(6):2237–53.

    Article  CAS  Google Scholar 

  33. Shosha E, Xu Z, Narayanan SP, Lemtalsi T, Fouda AY, Rojas M et al. Mechanisms of diabetes-induced endothelial cell senescence: role of arginase 1. Int J Mol Sci. 2018;19(4):1215.

  34. Wang WJ, Cai GY, Chen XM. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease. Oncotarget. 2017;8(38):64520–33.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27(17):2652–60 e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. De Cecco M, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566(7742):73–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hoenicke L, Zender L. Immune surveillance of senescent cells--biological significance in cancer- and non-cancer pathologies. Carcinogenesis. 2012;33(6):1123–6.

    Article  PubMed  CAS  Google Scholar 

  38. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9.

    Article  PubMed  Google Scholar 

  39. Spoto B, Leonardis D, Parlongo RM, Pizzini P, Pisano A, Cutrupi S, et al. Plasma cytokines, glomerular filtration rate and adipose tissue cytokines gene expression in chronic kidney disease (CKD) patients. Nutr Metab Cardiovasc Dis. 2012;22(11):981–8.

    Article  PubMed  CAS  Google Scholar 

  40. Perlman AS, Chevalier JM, Wilkinson P, Liu H, Parker T, Levine DM, et al. Serum inflammatory and immune mediators are elevated in early stage diabetic nephropathy. Ann Clin Lab Sci. 2015;45(3):256–63.

    PubMed  CAS  Google Scholar 

  41. Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, et al. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol. 2008;19(4):789–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Vianna HR, Soares CMBM, Silveira KD, Elmiro GS, Mendes PM, de Sousa Tavares M, et al. Cytokines in chronic kidney disease: potential link of MCP-1 and dyslipidemia in glomerular diseases. Pediatr Nephrol. 2013;28(3):463–9.

    Article  PubMed  Google Scholar 

  43. Lee BT, Ahmed FA, Hamm LL, Teran FJ, Chen CS, Liu Y, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol. 2015;16:77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wu J, et al. Urinary TNF-alpha and NGAL are correlated with the progression of nephropathy in patients with type 2 diabetes. Exp Ther Med. 2013;6(6):1482–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol. 2013;201(4):613–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lin M, Yiu WH, Wu HJ, Chan LYY, Leung JCK, Au WS, et al. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol. 2012;23(1):86–102.

    Article  PubMed  CAS  Google Scholar 

  47. Chen Q, Guan X, Zuo X, Wang J, Yin W. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm Sin B. 2016;6(3):183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shi H, Che Y, Bai L, Zhang J, Fan J, Mao H. High mobility group box 1 in diabetic nephropathy. Exp Ther Med. 2017;14(3):2431–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chen X, Ma J, Kwan T, Stribos EGD, Messchendorp AL, Loh YW, et al. Blockade of HMGB1 attenuates diabetic nephropathy in mice. Sci Rep. 2018;8(1):8319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cheng H, Fan X, Guan Y, Moeckel GW, Zent R, Harris RC. Distinct roles for basal and induced COX-2 in podocyte injury. J Am Soc Nephrol. 2009;20(9):1953–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cheng H, Fan X, Moeckel GW, Harris RC. Podocyte COX-2 exacerbates diabetic nephropathy by increasing podocyte (pro)renin receptor expression. J Am Soc Nephrol. 2011;22(7):1240–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Umeda F, Kuroki T, Nawata H. Prostaglandins and diabetic nephropathy. J Diabetes Complicat. 1995;9(4):334–6.

    Article  CAS  Google Scholar 

  53. Rovin BH, Wilmer WA, Lu L, Doseff AI, Dixon C, Kotur M, et al. 15-Deoxy-Delta12,14-prostaglandin J2 regulates mesangial cell proliferation and death. Kidney Int. 2002;61(4):1293–302.

    Article  PubMed  CAS  Google Scholar 

  54. Ito H, Yan X, Nagata N, Aritake K, Katsumata Y, Matsuhashi T, et al. PGD2-CRTH2 pathway promotes tubulointerstitial fibrosis. J Am Soc Nephrol. 2012;23(11):1797–809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ding X, Murray PA. Cellular mechanisms of thromboxane A2-mediated contraction in pulmonary veins. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L825–33.

    Article  PubMed  CAS  Google Scholar 

  56. Masumura H, Kunitada S, Irie K, Ashida S, Abe Y. A thromboxane A2 synthetase inhibitor retards hypertensive rat diabetic nephropathy. Eur J Pharmacol. 1992;210(2):163–72.

    Article  PubMed  CAS  Google Scholar 

  57. Catalano A, Rodilossi S, Caprari P, Coppola V, Procopio A. 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. EMBO J. 2005;24(1):170–9.

    Article  PubMed  CAS  Google Scholar 

  58. Kamata M, Amano H, Ito Y, Fujita T, Otaka F, Hosono K, et al. Role of the high-affinity leukotriene B4 receptor signaling in fibrosis after unilateral ureteral obstruction in mice. PLoS One. 2019;14(2):e0202842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rubinstein M, Dvash E. Leukotrienes and kidney diseases. Curr Opin Nephrol Hypertens. 2018;27(1):42–8.

    Article  PubMed  CAS  Google Scholar 

  60. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC. TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol. 2003;284(2):F243–52.

    Article  PubMed  CAS  Google Scholar 

  62. Loeffler I, Wolf G. Transforming growth factor-beta and the progression of renal disease. Nephrol Dial Transplant. 2014;29(Suppl 1):i37–45.

    Article  PubMed  CAS  Google Scholar 

  63. Matsuo S, Lepez-Guisa JSM, Cai X, Okamura DM, Alpers CE, Bumgarner RE, et al. Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int. 2005;67(6):2221–38.

    Article  PubMed  CAS  Google Scholar 

  64. Nicholas SB, Aguiniga E, Ren Y, Kim J, Wong J, Govindarajan N, et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 2005;67(4):1297–307.

    Article  PubMed  CAS  Google Scholar 

  65. Ma LJ, Fogo AB. PAI-1 and kidney fibrosis. Front Biosci (Landmark Ed). 2009;14:2028–41.

    Article  CAS  Google Scholar 

  66. Eddy AA, Fogo AB. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol. 2006;17(11):2999–3012.

    Article  PubMed  CAS  Google Scholar 

  67. Kenichi M, Masanobu M, Takehiko K, Shoko T, Akira F, Katsushige A, et al. Renal synthesis of urokinase type-plasminogen activator, its receptor, and plasminogen activator inhibitor-1 in diabetic nephropathy in rats: modulation by angiotensin-converting-enzyme inhibitor. J Lab Clin Med. 2004;144(2):69–77.

    Article  PubMed  CAS  Google Scholar 

  68. Wei C, el Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med. 2011;17(8):952–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, et al. Soluble urokinase receptor and chronic kidney disease. N Engl J Med. 2015;373(20):1916–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang S, Skorczewski J, Feng X, Mei L, Murphy-Ullrich JE. Glucose up-regulates thrombospondin 1 gene transcription and transforming growth factor-beta activity through antagonism of cGMP-dependent protein kinase repression via upstream stimulatory factor 2. J Biol Chem. 2004;279(33):34311–22.

    Article  PubMed  CAS  Google Scholar 

  71. Hohenstein B, Daniel C, Hausknecht B, Boehmer K, Riess R, Amann KU, et al. Correlation of enhanced thrombospondin-1 expression, TGF-beta signalling and proteinuria in human type-2 diabetic nephropathy. Nephrol Dial Transplant. 2008;23(12):3880–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Daniel C, Schaub K, Amann K, Lawler J, Hugo C. Thrombospondin-1 is an endogenous activator of TGF-beta in experimental diabetic nephropathy in vivo. Diabetes. 2007;56(12):2982–9.

    Article  PubMed  CAS  Google Scholar 

  73. Abbate M, Zoja C, Corna D, Rottoli D, Zanchi C, Azzollini N, et al. Complement-mediated dysfunction of glomerular filtration barrier accelerates progressive renal injury. J Am Soc Nephrol. 2008;19(6):1158–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Vaisar T, Durbin-Johnson B, Whitlock K, Babenko I, Mehrotra R, Rocke DM, et al. Urine complement proteins and the risk of kidney disease progression and mortality in type 2 diabetes. Diabetes Care. 2018;41(11):2361–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017;169(1):132–47 e16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pisco AO, Schaum N, McGeever A, Karkanias J, Neff NF, Darmanis S et al. A single cell transcriptomic atlas characterizes aging tissues in the mouse. bioRxiv. 2019:661728.

  77. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kim SR, Jiang K, Ogrodnik M, Chen X, Zhu XY, Lohmeier H, et al. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl Res. 2019;213:112–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D. Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One. 2011;6(6):e21226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ozkurt S, Temiz G, Acikalin MF, Soydan M. Acute renal failure under dasatinib therapy. Ren Fail. 2010;32(1):147–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Dr. Wiley receives support from AG051729 (PI: Campisi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Wiley.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiley, C.D. Role of Senescent Renal Cells in Pathophysiology of Diabetic Kidney Disease. Curr Diab Rep 20, 33 (2020). https://doi.org/10.1007/s11892-020-01314-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01314-y

Keywords

Navigation