Skip to main content

Advertisement

Log in

Periodic and Intermittent Fasting in Diabetes and Cardiovascular Disease

  • Macrovascular Complications in Diabetes (VS Aroda and L-S Chang, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular disease (CVD) is one of the leading causes of death globally. Nutrition plays a central role in CVD risk by affecting aging, adiposity, glycemia, blood pressure, cholesterol, inflammation, and other risk factors and can affect CVD risk not only based on calorie intake and dietary composition but also the timing and range of meals. This review evaluates the effects of fasting, fasting-mimicking diets, and time-restricted eating on the reduction of CVD risk factors and provides initial data on their potential to serve as CVD prevention and treatment therapies.

Recent Findings

Intermittent fasting (IF), time-restricted eating (TRE), prolonged fasting (PF), and fasting-mimicking diets (FMD) show promise in the reduction of CVD risk factors.

Summary

Results on IF, TRE, PF, and FMD on CVD risk factors are significant and often independent of weight loss, yet long-term studies on their effect on CVD are still lacking. Coupling periodic and prolonged, or intermittent and more frequent cycles of fasting or fasting-mimicking diets, designed to maximize compliance and minimize side effects, has the potential to play a central role in the prevention and treatment of CVD and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular diseases

IF:

Intermittent fasting

ADF:

Alternate day fasting

TRE:

Time-restricted eating

PF:

Prolonged fasting

FMD:

Fasting-mimicking diet

TG:

Triglycerides

TC:

Total cholesterol

LDL-C:

Low-density lipoprotein cholesterol

HDL-C:

High-density lipoprotein cholesterol

WC:

Waist circumference

BP:

Blood pressure

SBP/DBP:

Systolic/diastolic blood pressure

CR:

Calorie restriction

References

  1. WHO. Cardiovascular Diseases (CVDs) Key Facts World Health Organization. 2017.

    Google Scholar 

  2. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  PubMed  Google Scholar 

  3. Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6. https://doi.org/10.7326/0003-4819-122-7-199504010-00001.

    Article  CAS  PubMed  Google Scholar 

  4. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320–8. https://doi.org/10.1093/ajcn/56.2.320.

    Article  CAS  PubMed  Google Scholar 

  5. Ryan AS, Nicklas BJ. Reductions in plasma cytokine levels with weight loss improve insulin sensitivity in overweight and obese postmenopausal women. Diabetes Care. 2004;27(7):1699–705. https://doi.org/10.2337/diacare.27.7.1699.

    Article  PubMed  Google Scholar 

  6. Jae SY, Fernhall B, Heffernan KS, Jeong M, Chun EM, Sung J, et al. Effects of lifestyle modifications on C-reactive protein: contribution of weight loss and improved aerobic capacity. Metabolism. 2006;55(6):825–31. https://doi.org/10.1016/j.metabol.2006.02.010.

    Article  CAS  PubMed  Google Scholar 

  7. Look ARG, Gregg EW, Jakicic JM, Blackburn G, Bloomquist P, Bray GA, et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016;4(11):913–21. https://doi.org/10.1016/S2213-8587(16)30162-0.

    Article  Google Scholar 

  8. de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019;381(26):2541–51. https://doi.org/10.1056/NEJMra1905136.

    Article  PubMed  Google Scholar 

  9. Barnosky AR, Hoddy KK, Unterman TG, Varady KA. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Transl Res. 2014;164(4):302–11. https://doi.org/10.1016/j.trsl.2014.05.013.

    Article  PubMed  Google Scholar 

  10. Brandhorst S, Longo VD. Protein quantity and source, fasting-mimicking diets, and longevity. Adv Nutr. 2019;10(Suppl_4):S340–S50. https://doi.org/10.1093/advances/nmz079.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46–58. https://doi.org/10.1016/j.arr.2016.10.005.

    Article  PubMed  Google Scholar 

  12. Brandhorst S, Longo VD. Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ Res. 2019;124(6):952–65. https://doi.org/10.1161/CIRCRESAHA.118.313352.

    Article  CAS  PubMed  Google Scholar 

  13. Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr. 2019;39:291–315. https://doi.org/10.1146/annurev-nutr-082018-124320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annu Rev Nutr. 2017;37:371–93. https://doi.org/10.1146/annurev-nutr-071816-064634.

    Article  CAS  PubMed  Google Scholar 

  15. Yuen AW, Sander JW. Rationale for using intermittent calorie restriction as a dietary treatment for drug resistant epilepsy. Epilepsy Behav. 2014;33:110–4. https://doi.org/10.1016/j.yebeh.2014.02.026.

    Article  PubMed  Google Scholar 

  16. Anastasiou CA, Karfopoulou E, Yannakoulia M. Weight regaining: from statistics and behaviors to physiology and metabolism. Metabolism. 2015;64(11):1395–407. https://doi.org/10.1016/j.metabol.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  17. Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011;14(2):275–87. https://doi.org/10.1089/ars.2010.3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin CK, Heilbronn LK, de Jonge L, DeLany JP, Volaufova J, Anton SD, et al. Effect of calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity (Silver Spring). 2007;15(12):2964–73. https://doi.org/10.1038/oby.2007.354.

    Article  Google Scholar 

  19. Mole PA, Stern JS, Schultz CL, Bernauer EM, Holcomb BJ. Exercise reverses depressed metabolic rate produced by severe caloric restriction. Med Sci Sports Exerc. 1989;21(1):29–33. https://doi.org/10.1249/00005768-198902000-00006.

    Article  CAS  PubMed  Google Scholar 

  20. Poehlman ET. Reduced metabolic rate after caloric restriction-can we agree on how to normalize the data? J Clin Endocrinol Metab. 2003;88(1):14–5. https://doi.org/10.1210/jc.2002-021672.

    Article  CAS  PubMed  Google Scholar 

  21. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27(6):1212–21 e3. https://doi.org/10.1016/j.cmet.2018.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 2019;11(6). https://doi.org/10.3390/nu11061234.

  23. Hutchison AT, Regmi P, Manoogian ENC, Fleischer JG, Wittert GA, Panda S, et al. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity (Silver Spring). 2019;27(5):724–32. https://doi.org/10.1002/oby.22449.

    Article  CAS  Google Scholar 

  24. Chow LS, Manoogian ENC, Alvear A, Fleischer JG, Thor H, Dietsche K, et al. Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: a feasibility study. Obesity (Silver Spring). 2020;28(5):860–9. https://doi.org/10.1002/oby.22756.

    Article  CAS  Google Scholar 

  25. Lowe DA, Wu N, Rohdin-Bibby L, Moore AH, Kelly N, Liu YE, et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern Med. 2020;180:1491. https://doi.org/10.1001/jamainternmed.2020.4153.

    Article  Google Scholar 

  26. Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31(1):92–104 e5. https://doi.org/10.1016/j.cmet.2019.11.004.

    Article  CAS  PubMed  Google Scholar 

  27. Parvaresh A, Razavi R, Abbasi B, Yaghoobloo K, Hassanzadeh A, Mohammadifard N, et al. Modified alternate-day fasting vs calorie restriction in the treatment of patients with metabolic syndrome: a randomized clinical trial. Complement Ther Med. 2019;47:102187. https://doi.org/10.1016/j.ctim.2019.08.021.

    Article  PubMed  Google Scholar 

  28. Trepanowski JF, Kroeger CM, Barnosky A, Klempel MC, Bhutani S, Hoddy KK, et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med. 2017;177(7):930–8. https://doi.org/10.1001/jamainternmed.2017.0936.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gabel K, Kroeger CM, Trepanowski JF, Hoddy KK, Cienfuegos S, Kalam F, et al. Differential effects of alternate-day fasting versus daily calorie restriction on insulin resistance. Obesity (Silver Spring). 2019;27(9):1443–50. https://doi.org/10.1002/oby.22564.

    Article  CAS  Google Scholar 

  30. Stekovic S, Hofer SJ, Tripolt N, Aon MA, Royer P, Pein L, et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, Non-obese Humans. Cell Metab. 2019;30(3):462–76 e6. https://doi.org/10.1016/j.cmet.2019.07.016.

    Article  CAS  PubMed  Google Scholar 

  31. Sundfor TM, Svendsen M, Tonstad S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. Nutr Metab Cardiovasc Dis. 2018;28(7):698–706. https://doi.org/10.1016/j.numecd.2018.03.009.

    Article  CAS  PubMed  Google Scholar 

  32. Catenacci VA, Pan Z, Ostendorf D, Brannon S, Gozansky WS, Mattson MP, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity (Silver Spring). 2016;24(9):1874–83. https://doi.org/10.1002/oby.21581.

    Article  CAS  Google Scholar 

  33. Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW, Budniak J, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med. 2017;9(377):eaai8700. https://doi.org/10.1126/scitranslmed.aai8700.

  34. Wilhelmi de Toledo F, Grundler F, Bergouignan A, Drinda S, Michalsen A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PloS one. 2019;14(1):e0209353. https://doi.org/10.1371/journal.pone.0209353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22(5):789–98. https://doi.org/10.1016/j.cmet.2015.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi HR, Kim J, Lim H, Park YK. Two-week exclusive supplementation of modified ketogenic nutrition drink reserves lean body mass and improves blood lipid profile in obese adults: a randomized clinical trial. Nutrients. 2018;10(12). https://doi.org/10.3390/nu10121895.

  37. Antoni R, Robertson TM, Robertson MD, Johnston JD. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J Nutr Sci. 2018;7(e22):1–6. https://doi.org/10.1017/jns.2018.13.

  38. Cirillo P, Sautin YY, Kanellis J, Kang DH, Gesualdo L, Nakagawa T, et al. Systemic inflammation, metabolic syndrome and progressive renal disease. Nephrol Dial Transplant. 2009;24(5):1384–7. https://doi.org/10.1093/ndt/gfp038.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paquissi FC. The role of inflammation in cardiovascular diseases: the predictive value of neutrophil-lymphocyte ratio as a marker in peripheral arterial disease. Ther Clin Risk Manag. 2016;12:851–60. https://doi.org/10.2147/TCRM.S107635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pitsavos C, Tampourlou M, Panagiotakos DB, Skoumas Y, Chrysohoou C, Nomikos T, et al. Association between low-grade systemic inflammation and type 2 diabetes mellitus among men and women from the ATTICA study. Rev Diabet Stud. 2007;4(2):98–104. https://doi.org/10.1900/RDS.2007.4.98.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gasmi M, Sellami M, Denham J, Padulo J, Kuvacic G, Selmi W, et al. Time-restricted feeding influences immune responses without compromising muscle performance in older men. Nutrition. 2018;51–52:29–37. https://doi.org/10.1016/j.nut.2017.12.014.

    Article  PubMed  Google Scholar 

  42. Gabel K, Hoddy KK, Haggerty N, Song J, Kroeger CM, Trepanowski JF, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Healthy Aging. 2018;4(4):345–53. https://doi.org/10.3233/NHA-170036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen L, Magliano DJ, Balkau B, Colagiuri S, Zimmet PZ, Tonkin AM, et al. AUSDRISK: an Australian type 2 diabetes risk assessment tool based on demographic, lifestyle and simple anthropometric measures. Med J Aust. 2010;192(4):197–202.

    Article  Google Scholar 

  44. Harvie M, Wright C, Pegington M, McMullan D, Mitchell E, Martin B, et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr. 2013;110(8):1534–47. https://doi.org/10.1017/S0007114513000792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heilbronn LK, Smith SR, Martin CK, Anton SD, Ravussin E. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005;81(1):69–73. https://doi.org/10.1093/ajcn/81.1.69.

    Article  CAS  PubMed  Google Scholar 

  46. Halberg N, Henriksen M, Soderhamn N, Stallknecht B, Ploug T, Schjerling P, et al. Effect of intermittent fasting and refeeding on insulin action in healthy men. J Appl Physiol (1985). 2005;99(6):2128–36. https://doi.org/10.1152/japplphysiol.00683.2005.

    Article  CAS  Google Scholar 

  47. Varady KA, Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Haus JM, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12(1):146. https://doi.org/10.1186/1475-2891-12-146.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Varady KA, Bhutani S, Church EC, Klempel MC. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. 2009;90(5):1138–43. https://doi.org/10.3945/ajcn.2009.28380.

    Article  CAS  PubMed  Google Scholar 

  49. Klempel MC, Kroeger CM, Varady KA. Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet. Metabolism. 2013;62(1):137–43. https://doi.org/10.1016/j.metabol.2012.07.002.

    Article  CAS  PubMed  Google Scholar 

  50. Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Varady KA. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity (Silver Spring). 2013;21(7):1370–9. https://doi.org/10.1002/oby.20353.

    Article  CAS  Google Scholar 

  51. Kessler CS, Stange R, Schlenkermann M, Jeitler M, Michalsen A, Selle A, et al. A nonrandomized controlled clinical pilot trial on 8 wk of intermittent fasting (24 h/wk). Nutrition. 2018;46:143–52 e2. https://doi.org/10.1016/j.nut.2017.08.004.

    Article  PubMed  Google Scholar 

  52. Wegman MP, Guo MH, Bennion DM, Shankar MN, Chrzanowski SM, Goldberg LA, et al. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation Res. 2015;18(2):162–72. https://doi.org/10.1089/rej.2014.1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rozing MP, Westendorp RG, de Craen AJ, Frolich M, Heijmans BT, Beekman M, et al. Low serum free triiodothyronine levels mark familial longevity: the Leiden longevity study. J Gerontol A Biol Sci Med Sci. 2010;65(4):365–8. https://doi.org/10.1093/gerona/glp200.

    Article  CAS  PubMed  Google Scholar 

  54. Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng CW, Madia F, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://doi.org/10.1016/j.cmet.2014.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ruckenstuhl C, Netzberger C, Entfellner I, Carmona-Gutierrez D, Kickenweiz T, Stekovic S, et al. Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet. 2014;10(5):e1004347. https://doi.org/10.1371/journal.pgen.1004347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Furmli S, Elmasry R, Ramos M, Fung J. Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Rep. 2018;2018:bcr2017221854. https://doi.org/10.1136/bcr-2017-221854.

  57. Hall KD, Kahan S. Maintenance of lost weight and long-term management of obesity. Med Clin North Am. 2018;102(1):183–97. https://doi.org/10.1016/j.mcna.2017.08.012.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Greenberg I, Stampfer MJ, Schwarzfuchs D, Shai I, Group D. Adherence and success in long-term weight loss diets: the dietary intervention randomized controlled trial (DIRECT). J Am Coll Nutr. 2009;28(2):159–68. https://doi.org/10.1080/07315724.2009.10719767.

    Article  CAS  PubMed  Google Scholar 

  59. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23(6):1048–59. https://doi.org/10.1016/j.cmet.2016.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018;18(11):707–19. https://doi.org/10.1038/s41568-018-0061-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brandhorst S, Longo VD. Fasting and caloric restriction in cancer prevention and treatment. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2016;207:241–66. https://doi.org/10.1007/978-3-319-42118-6_12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70–13. https://doi.org/10.1126/scitranslmed.3001845.

    Article  CAS  Google Scholar 

  63. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19(2):181–92. https://doi.org/10.1016/j.cmet.2013.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Michalsen A, Li C. Fasting therapy for treating and preventing disease - current state of evidence. Forsch Komplementmed. 2013;20(6):444–53. https://doi.org/10.1159/000357765.

    Article  PubMed  Google Scholar 

  65. Hutcheon DA. Malnutrition-induced Wernicke’s encephalopathy following a water-only fasting diet. Nutr Clin Pract. 2015;30(1):92–9. https://doi.org/10.1177/0884533614561793.

    Article  PubMed  Google Scholar 

  66. Finnell JS, Saul BC, Goldhamer AC, Myers TR. Is fasting safe? A chart review of adverse events during medically supervised, water-only fasting. BMC Complement Altern Med. 2018;18(1):67. https://doi.org/10.1186/s12906-018-2136-6.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wilhelmi de Toledo F, Buchinger A, Burggrabe H, Holz G, Kuhn C, Lischka E, et al. Fasting therapy - an expert panel update of the 2002 consensus guidelines. Forsch Komplementmed. 2013;20(6):434–43. https://doi.org/10.1159/000357602.

    Article  PubMed  Google Scholar 

  68. Oh TJ, Moon JH, Choi SH, Lim S, Park KS, Cho NH, et al. Body-weight fluctuation and incident diabetes mellitus, cardiovascular disease, and mortality: a 16-year prospective cohort study. J Clin Endocrinol Metab. 2019;104(3):639–46. https://doi.org/10.1210/jc.2018-01239.

    Article  PubMed  Google Scholar 

  69. Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015;22(1):86–99. https://doi.org/10.1016/j.cmet.2015.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et al. Fasting-mimicking diet promotes Ngn3-driven beta-cell regeneration to reverse diabetes. Cell. 2017;168(5):775–88 e12. https://doi.org/10.1016/j.cell.2017.01.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P, Wei M, et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature. 2020;583(7817):620–4. https://doi.org/10.1038/s41586-020-2502-7.

    Article  CAS  PubMed  Google Scholar 

  72. Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S, et al. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep. 2016;15(10):2136–46. https://doi.org/10.1016/j.celrep.2016.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. de Groot S, Lugtenberg RT, Cohen D, Welters MJP, Ehsan I, Vreeswijk MPG, et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun. 2020;11(1):3083. https://doi.org/10.1038/s41467-020-16138-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Biase S, Lee C, Brandhorst S, Manes B, Buono R, Cheng CW, et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell. 2016;30(1):136–46. https://doi.org/10.1016/j.ccell.2016.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Di Tano M, Raucci F, Vernieri C, Caffa I, Buono R, Fanti M, et al. Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Nat Commun. 2020;11(1):2332. https://doi.org/10.1038/s41467-020-16243-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 2019;26(10):2704–19 e6. https://doi.org/10.1016/j.celrep.2019.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou ZL, Jia XB, Sun MF, Zhu YL, Qiao CM, Zhang BP, et al. Neuroprotection of fasting mimicking diet on MPTP-induced Parkinson’s disease mice via gut microbiota and metabolites. Neurotherapeutics. 2019;16(3):741–60. https://doi.org/10.1007/s13311-019-00719-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med. 2016;14(1):290. https://doi.org/10.1186/s12967-016-1044-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anton SD, Lee SA, Donahoo WT, McLaren C, Manini T, Leeuwenburgh C, et al. The effects of time restricted feeding on overweight, older adults: a pilot study. Nutrients. 2019;11(7):1500-9. https://doi.org/10.3390/nu11071500.

  80. Tinsley GM, Forsse JS, Butler NK, Paoli A, Bane AA, La Bounty PM, et al. Time-restricted feeding in young men performing resistance training: a randomized controlled trial. Eur J Sport Sci. 2017;17(2):200–7. https://doi.org/10.1080/17461391.2016.1223173.

    Article  PubMed  Google Scholar 

  81. Chowdhury EA, Richardson JD, Holman GD, Tsintzas K, Thompson D, Betts JA. The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults. Am J Clin Nutr. 2016;103(3):747–56. https://doi.org/10.3945/ajcn.115.122044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grant CL, Coates AM, Dorrian J, Kennaway DJ, Wittert GA, Heilbronn LK, et al. Timing of food intake during simulated night shift impacts glucose metabolism: a controlled study. Chronobiol Int. 2017;34(8):1003–13. https://doi.org/10.1080/07420528.2017.1335318.

    Article  PubMed  Google Scholar 

  83. Sichieri R, Everhart JE, Roth H. A prospective study of hospitalization with gallstone disease among women: role of dietary factors, fasting period, and dieting. Am J Public Health. 1991;81(7):880–4. https://doi.org/10.2105/ajph.81.7.880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sievert K, Hussain SM, Page MJ, Wang Y, Hughes HJ, Malek M, et al. Effect of breakfast on weight and energy intake: systematic review and meta-analysis of randomised controlled trials. BMJ. 2019;364:l42. https://doi.org/10.1136/bmj.l42.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cahill LE, Chiuve SE, Mekary RA, Jensen MK, Flint AJ, Hu FB, et al. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation. 2013;128(4):337–43. https://doi.org/10.1161/CIRCULATIONAHA.113.001474.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ballon A, Neuenschwander M, Schlesinger S. Breakfast skipping is associated with increased risk of type 2 diabetes among adults: a systematic review and meta-analysis of prospective cohort studies. J Nutr. 2019;149(1):106–13. https://doi.org/10.1093/jn/nxy194.

    Article  PubMed  Google Scholar 

  87. Nuttall FQ, Almokayyad RM, Gannon MC. Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metabolism. 2015;64(2):253Nuttall FQ, Almokayyad RM, Gannon MC. Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metabolism. 2015;64(2):253–62. https://doi.org/10.1016/j.metabol.2014.10.004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter D Longo.

Ethics declarations

Conflict of Interest

Annunziata Nancy Crupi, Jonathan Haase, and Sebastian Brandhorst each declare no potential conflicts of interest.

Valter D Longo has equity interest in L-Nutra, 100% of which will be donated to charity and research at non-profit institutions.

USC has licensed intellectual property to L-Nutra and has the potential to receive royalty payments.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Consent for Publication

Dr. Courtney M. Peterson has provided unpublished data from previously published studies and consented to publication. All the other data discussed in this review have already been published.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crupi, A.N., Haase, J., Brandhorst, S. et al. Periodic and Intermittent Fasting in Diabetes and Cardiovascular Disease. Curr Diab Rep 20, 83 (2020). https://doi.org/10.1007/s11892-020-01362-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01362-4

Keywords

Navigation