Skip to main content
Log in

Helicobacter pylori infection and gastric cancer: Host, bug, environment, or all three?

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Helicobacter pylori is a common bacterial pathogen that colonizes the gastric mucosa of over 50% of the world’s population. All infected individuals exhibit chronic gastric inflammation, and approximately 1% of patients develop gastric cancers, including adenocarcinomas and mucosal-associated lymphoid tissue lymphomas. In 1994, the World Health Organization International Agency for Research on Cancer classified H. pylori as a type I, or definite carcinogen. Because the prevalence of gastric cancers among H. pyloriinfected patients varies between individuals, countries, and geographic areas, H. pylori disease-related outcomes are believed to be determined by an interplay between host factors, bacterial factors, and their interaction with the environment. This review highlights recent advances in our knowledge on H. pylori disease pathogenesis, focusing on the role of the host, bacteria, and environment in the development of gastric carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peek RM Jr, Blaser MJ: Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2002, 2:28–37. A comprehensive review of H. pylori bacterial factors and their synergistic interaction with the host to increase the risk of carcinogenesis by deregulating host inflammatory responses and epithelial cell physiology.

    Article  PubMed  CAS  Google Scholar 

  2. Sipponen P, Marshall BJ: Gastritis and gastric cancer: Western countries. Gastroenterol Clin North Am 2000, 29:579–592.

    Article  PubMed  CAS  Google Scholar 

  3. Backert S, Schwarz T, Miehlke S, et al.: Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer. Infect Immun 2004, 72:1043–1056.

    Article  PubMed  CAS  Google Scholar 

  4. Kikuchi S, Crabtree JE, Forman D, et al.: Association between infections with CagA-positive or-negative strains of Helicobacter pylori and risk for gastric cancer in young adults. Research Group on Prevention of Gastric Carcinoma Among Young Adults. Am J Gastroenterol 1999, 94:3455–3459.

    Article  PubMed  CAS  Google Scholar 

  5. Suerbaum S, Michetti P: Helicobacter pylori infection. N Engl J Med 2002, 347:1175–1186. This comprehensive article reviews H. pylori pathogenesis focusing on epidemiology and transmission of infection and the host inflammatory response. Also, relevant clinical information is highlighted with respect to clinical outcomes of infection, diagnostic tests, treatment of infection, and first-line therapies.

    Article  PubMed  CAS  Google Scholar 

  6. Selbach M, Moese S, Hauck CR, et al.: Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 2002, 277:6775–6778.

    Article  PubMed  CAS  Google Scholar 

  7. Stein M, Rappuoli R, Covacci A: Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A 2000, 97:1263–1268. This article demonstrated that H. pylori CagA is a bacterial virulence protein that is delivered into epithelial cells by the cag type IV secretion system, where it is phosphorylated on tyrosine residues by a host cell kinase and modulates eukaryotic signal transduction pathways and cytoskeletal rearrangements.

    Article  PubMed  CAS  Google Scholar 

  8. Lai YP, Yang JC, Lin TZ, et al.: CagA tyrosine phosphorylation in gastric epithelial cells caused by Helicobacter pylori in patients with gastric adenocarcinoma. Helicobacter 2003, 8:235–243.

    Article  PubMed  CAS  Google Scholar 

  9. Jeffers M, Rong S, Anver M, et al.: Autocrine hepatocyte growth factor/scatter factor-Met signaling induces transformation and the invasive/metastastic phenotype in C127 cells. Oncogene 1996, 13:853–856.

    PubMed  CAS  Google Scholar 

  10. Churin Y, Al-Ghoul L, Kepp O, et al.: Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol 2003, 161:249–255. This article demonstrated that H. pylori activates the hepatocyte growth factor/scatter factor receptor (c-Met), which is implicated in tumor development and in promoting tumor cell invasion and metastasis. H. pylori CagA targets the c-Met receptor intracellularly and promotes morphologic changes and motility in host cells in vitro. Deregulating c-Met receptor signaling in H. pylori-infected epithelial cells suggests that CagA could be involved in tumor progression.

    Article  PubMed  CAS  Google Scholar 

  11. Higashi H, Tsutsumi R, Muto S, et al.: SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 2002, 295:683–686. This article demonstrated that H. pylori CagA induces growth factor-like responses in gastric epithelial cells by forming a physical complex with the SRC homology 2 domain (SH2)-containing tyrosine phosphatase SHP-2 in a phosphorylation-dependent manner. Upon translocation, CagA perturbs cellular functions by deregulating SHP-2, which may be involved in gastric carcinogenesis.

    Article  PubMed  CAS  Google Scholar 

  12. Azuma T, Yamazaki S, Yamakawa A, et al.: Association between diversity in the Src homology 2 domain-containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. J Infect Dis 2004, 189:820–827.

    Article  PubMed  CAS  Google Scholar 

  13. Karin M, Cao Y, Greten FR, et al.: NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002, 2:301–310.

    Article  PubMed  CAS  Google Scholar 

  14. Bowie A, O’Neill LA: Oxidative stress and nuclear factorkappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 2000, 59:13–23.

    Article  PubMed  CAS  Google Scholar 

  15. Yang GF, Deng CS, Xiong YY, et al.: Expression of nuclear factorkappa B and target genes in gastric precancerous lesions and adenocarcinoma: association with Helicobactor pylori cagA (+) infection. World J Gastroenterol 2004, 10:491–496.

    PubMed  CAS  Google Scholar 

  16. Cover TL: The vacuolating cytotoxin of Helicobacter pylori. Mol Microbiol 1996 20:241–246.

    Article  PubMed  CAS  Google Scholar 

  17. Miehlke S, Kirsch C, Agha-Amiri K, et al.: The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int J Cancer 2000, 87:322–327.

    Article  PubMed  CAS  Google Scholar 

  18. Lehours P, Menard A, Dupouy S, et al.: Evaluation of the association of nine Helicobacter pylori virulence factors with strains involved in low-grade gastric mucosa-associated lymphoid tissue lymphoma. Infect Immun 2004, 72:880–888.

    Article  PubMed  CAS  Google Scholar 

  19. Ilver D, Arnqvist A, Ogren J, et al.: Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 1998, 279:373–377.

    Article  PubMed  CAS  Google Scholar 

  20. Prinz C, Schoniger M, Rad R, et al.: Key importance of the Helicobacter pylori adherence factor blood group antigen binding adhesin during chronic gastric inflammation. Cancer Res 2001, 61:1903–1909.

    PubMed  CAS  Google Scholar 

  21. Zambon CF, Navaglia F, Basso D, et al.: Helicobacter pylori babA2, cagA, and s1 vacA genes work synergistically in causing intestinal metaplasia. J Clin Pathol 2003, 56:287–291.

    Article  PubMed  Google Scholar 

  22. Macarthur M, Hold GL, El-Omar EM: Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol 2004, 286:G515-G520.

    Article  PubMed  CAS  Google Scholar 

  23. Danese S, Cremonini F, Armuzzi A, et al.: Helicobacter pylori CagA-positive strains affect oxygen free radicals generation by gastric mucosa. Scand J Gastroenterol 2001, 36:247–250.

    Article  PubMed  CAS  Google Scholar 

  24. Smoot DT, Elliott TB, Verspaget HW, et al.: Influence of Helicobacter pylori on reactive oxygen-induced gastric epithelial cell injury. Carcinogenesis 2000, 21:2091–2095.

    Article  PubMed  CAS  Google Scholar 

  25. Jaiswal M, LaRusso NF, Gores GJ: Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol 2001, 281:G626-G634.

    PubMed  CAS  Google Scholar 

  26. Rieder G, Hofmann JA, Hatz RA, et al.: Up-regulation of inducible nitric oxide synthase in Helicobacter pyloriassociated gastritis may represent an increased risk factor to develop gastric carcinoma of the intestinal type. Int J Med Microbiol 2003, 293:403–412.

    Article  PubMed  CAS  Google Scholar 

  27. van Rees BP, Saukkonen K, Ristimaki A, et al.: Cyclooxygenase-2 expression during carcinogenesis in the human stomach. J Pathol 2002, 196:171–179.

    Article  PubMed  CAS  Google Scholar 

  28. Williams CS, Smalley W, DuBois RN: Aspirin use and potential mechanisms for colorectal cancer prevention. J Clin Invest 1997, 100:1325–1329.

    PubMed  CAS  Google Scholar 

  29. Guo XL, Wang LE, Du SY, et al.: Association of cyclooxygenase-2 expression with Hp-cagA infection in gastric cancer. World J Gastroenterol 2003, 9:246–249.

    PubMed  CAS  Google Scholar 

  30. Nardone G, Rocco A, Vaira D, et al.: Expression of COX-2, mPGE-synthase1, MDR-1 (P-gp), and Bcl-xL: a molecular pathway of H. pylori-related gastric carcinogenesis. J Pathol 2004, 202:305–312.

    Article  PubMed  CAS  Google Scholar 

  31. Reymann A, Woermann C, Froschle G, et al.: Sensitive assessment of cytostatic drug resistance-mediating factors MDR1 and MRP in tumors of the gastrointestinal tract by RT-PCR. Int J Clin Pharmacol Ther 1998, 36:55–57.

    PubMed  CAS  Google Scholar 

  32. Patel VA, Dunn MJ, Sorokin A: Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J Biol Chem 2002, 277:38915–38920.

    Article  PubMed  CAS  Google Scholar 

  33. Yu H, Jove R: The STATs of cancer: new molecular targets come of age. Nat Rev Cancer 2004, 4:97–105.

    Article  PubMed  CAS  Google Scholar 

  34. Mora LB, Buettner R, Seigne J, et al.: Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 2002, 62:6659–6666.

    PubMed  CAS  Google Scholar 

  35. Kanda N, Seno H, Konda Y, et al.: STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene 2004, 23:4921–4929.

    Article  PubMed  CAS  Google Scholar 

  36. Altieri DC: Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003, 3:46–54.

    Article  PubMed  CAS  Google Scholar 

  37. Kawasaki H, Altieri DC, Lu CD, et al.: Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 1998, 58:5071–5074.

    PubMed  CAS  Google Scholar 

  38. Tebbutt NC, Giraud AS, Inglese M, et al.: Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med 2002, 8:1089–97. This was the first study to generate a ‘knock-in’ mouse model with a mutation in the IL-6 family coreceptor gp130, which inhibits SHP-2 signaling but augments STAT3 signaling. These mice developed adenocarcinoma by 3 months, similar to the phenotype exhibited by mice deficient in trefoil factor 1 (TFF1). The findings suggest that gastric hyperplasia may occur when the coordinated activation of STAT3 and SHP-2 pathways are disrupted.

    Article  PubMed  CAS  Google Scholar 

  39. Judd LM, Alderman BM, Howlett M, et al.: Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 2004, 126:196–207. Mice deficient in the SHP-2 binding site on the IL-6 family receptor gp130 (gp130757F/F) developed antral gastritis that progressed to gastric cancer in association with increased Reg 1 expression and concomitant inhibition of trefoil factor 1 and gastrin expression. This suggests that balanced IL-6 signaling is required for maintaining gastric homeostasis.

    Article  PubMed  CAS  Google Scholar 

  40. El-Omar EM, Rabkin CS, Gammon MD, et al.: Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 2003, 124:1193–1201.

    Article  PubMed  CAS  Google Scholar 

  41. El-Omar EM, Carrington M, Chow WH, et al.: Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000, 404:398–402. This article demonstrated that the IL-1β polymorphism is an important host genetic marker for H. pylori-induced gastric cancer, setting the stage for the discovery of other important host polymorphisms involved in the induction of gastric carcinogenesis, including IL-6 and TNF-α.

    Article  PubMed  CAS  Google Scholar 

  42. Takashima M, Furuta T, Hanai H, et al.: Effects of Helicobacter pylori infection on gastric acid secretion and serum gastrin levels in Mongolian gerbils. Gut 2001, 48:765–773.

    Article  PubMed  CAS  Google Scholar 

  43. Rad R, Prinz C, Neu B, et al.: Synergistic effect of Helicobacter pylori virulence factors and interleukin-1 polymorphisms for the development of severe histological changes in the gastric mucosa. J Infect Dis 2003, 188:272–281.

    Article  PubMed  CAS  Google Scholar 

  44. Wijnhoven BP, Dinjens WN, Pignatelli M: E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 2000, 87:992–1005.

    Article  PubMed  CAS  Google Scholar 

  45. Guilford P, Hopkins J, Harraway J, et al.: E-cadherin germline mutations in familial gastric cancer. Nature 1998, 392:402–405.

    Article  PubMed  CAS  Google Scholar 

  46. Becker KF, Atkinson MJ, Reich U, et al.: E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 1994, 54:3845–3852.

    PubMed  CAS  Google Scholar 

  47. Kang GH, Shim YH, Jung HY, et al.: CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res 2001, 61:2847–2851.

    PubMed  CAS  Google Scholar 

  48. Chan AO, Lam SK, Wong BC, et al.: Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut 2003, 52:502–506.

    Article  PubMed  CAS  Google Scholar 

  49. Moss SF, Sordillo EM, Abdalla AM, et al.: Increased gastric epithelial cell apoptosis associated with colonization with cagA+ Helicobacter pylori strains. Cancer Res 2001, 61:1406–1411.

    PubMed  CAS  Google Scholar 

  50. Galmiche A, Rassow J, Doye A, et al.: The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J 2000, 19:6361–6370.

    Article  PubMed  CAS  Google Scholar 

  51. Fan X, Gunasena H, Cheng Z, et al.: Helicobacter pylori urease binds to class II MHC on gastric epithelial cells and induces their apoptosis. J Immunol 2000, 165:1918–1924.

    PubMed  CAS  Google Scholar 

  52. Shibayama K, Doi Y, Shibata N, et al.: Apoptotic signaling pathway activated by Helicobacter pylori infection and increase of apoptosis-inducing activity under serum-starved conditions. Infect Immun 2001, 69:3181–3189.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang H, Fang DC, Wang RQ, et al.: Effect of Helicobacter pylori infection on expression of Bcl-2 family members in gastric adenocarcinoma. World J Gastroenterol 2004, 10:227–230.

    PubMed  CAS  Google Scholar 

  54. Fox JG, Dangler CA, Taylor NS, et al.: High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice. Cancer Res 1999, 59:4823–4828.

    PubMed  CAS  Google Scholar 

  55. Fox JG, Rogers AB, Ihrig M, et al.: Helicobacter pyloriassociated gastric cancer in INS-GAS mice is gender specific. Cancer Res 2003, 63:942–950.

    PubMed  CAS  Google Scholar 

  56. Tari A, Kodama K, Sumii M, et al.: Does intragastric nitrite concentration reflect gastric carcinogenesis in Japanese Helicobacter pylori-infected patients? Dig Dis Sci 2003, 48:1730–1736.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menaker, R.J., Jones, N.L. Helicobacter pylori infection and gastric cancer: Host, bug, environment, or all three?. Curr Gastroenterol Rep 6, 429–435 (2004). https://doi.org/10.1007/s11894-004-0063-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-004-0063-9

Keywords

Navigation