Skip to main content

Advertisement

Log in

Echocardiographic Longitudinal Strain Analysis in Heart Failure: Real Usefulness for Clinical Management Beyond Diagnostic Value and Prognostic Correlations? A Comprehensive Review

  • Imaging in Heart Failure (J. Schulz-Menger, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a highly prevalent clinical syndrome characterized by considerable phenotypic heterogeneity. The traditional classification based on left ventricular ejection fraction (LVEF) is widely accepted by the guidelines and represents the grounds for patient enrollment in clinical trials, even though it shows several limitations. Ejection fraction (EF) is affected by preload, afterload, and contractility, it being problematic to express LV function in several conditions, such as HF with preserved EF (HFpEF), valvular heart disease, and subclinical HF, and in athletes. Over the last two decades, developments in diagnostic techniques have provided useful tools to overcome EF limitations. Strain imaging analysis (particularly global longitudinal strain (GLS)) has emerged as a useful echocardiographic technique in patients with HF, as it is able to simultaneously supply information on both systolic and diastolic functions, depending on cardiac anatomy and physiology/pathophysiology. The use of GLS has proved helpful in terms of diagnostic performance and prognostic value in several HF studies. Universally accepted cutoff values and variability across vendors remain an area to be fully explored, hence limiting routine application of this technique in clinical practice. In the present review, the current role of GLS in the diagnosis and management of patients with HF will be discussed. We describe, by critical analysis of the pros and cons, various clinical settings in HF, and how the appropriate use and interpretation of GLS can provide important clues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable for this type of manuscript.

Code Availability

Not applicable.

References

  1. Feigenbaum H. Journal of the American Society of Echocardiography: 25 years old. J Am Soc Echocardiogr. 2012;25(1):1–2.

    Article  PubMed  Google Scholar 

  2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al; Authors/Task Force members; document reviewers. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016;18(8):891–975.

  3. Triposkiadis F, Butler J, Abboud FM, Armstrong PW, Adamopoulos S, Atherton JJ, et al. The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J. 2019;40(26):2155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Packer M. Heart failure with a mid-range ejection fraction: a disorder that a psychiatrist would love. JACC Heart Fail. 2017;5(11):805–7.

    Article  PubMed  Google Scholar 

  5. Solomon SD, Claggett B, Lewis EF, Desai A, Anand I, Sweitzer NK, et al; TOPCAT Investigators. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J 2016;37(5):455–62.

  6. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al; PARAGON-HF Investigators and Committees. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 2019;381(17):1609–1620.

  7. Solomon SD, Vaduganathan M, Claggett BL, Packer M, Zile M, Swedberg K, et al. Sacubitril/valsartan across the spectrum of ejection fraction in heart failure. Circulation. 2020;141:352–61.

    Article  PubMed  Google Scholar 

  8. Douglas PS, Taylor A, Bild D, Bonow R, Greenland P, Lauer M, et al. Outcomes research in cardiovascular imaging: report of a workshop sponsored by the National Heart, Lung, and Blood Institute. J Am Soc Echocardiogr. 2009;22(7):766–73.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Douglas PS, Cerqueira MD, Berman DS, Chinnaiyan K, Cohen MS, Lundbye JB, et al; ACC Cardiovascular Imaging Council. The future of cardiac imaging: report of a think tank convened by the American College of Cardiology. JACC Cardiovasc Imaging 2016;9(10):1211–1223.

  10. Marwick TH. Ejection fraction pros and cons: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(19):2360–79.

    Article  PubMed  Google Scholar 

  11. Buxton AE. Should everyone with an ejection fraction less than or equal to 30% receive an implantable cardioverter-defibrillator? Not everyone with an ejection fraction < or = 30% should receive an implantable cardioverter-defibrillator. Circulation 2005;111(19):2537–49; discussion 2537–49.

  12. Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, et al; DANISH Investigators. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 2016;375(13):1221–30.

  13. Hu K, Liu D, Herrmann S, Niemann M, Gaudron PD, Voelker W, et al. Clinical implication of mitral annular plane systolic excursion for patients with cardiovascular disease. Eur Heart J Cardiovasc Imaging. 2013;14(3):205–12.

    Article  PubMed  Google Scholar 

  14. Galiuto L, Ignone G, DeMaria AN. Contraction and relaxation velocities of the normal left ventricle using pulsed-wave tissue Doppler echocardiography. Am J Cardiol. 1998;81(5):609–14.

    Article  CAS  PubMed  Google Scholar 

  15. Chen C, Rodriguez L, Levine RA, Weyman AE, Thomas JD. Noninvasive measurement of the time constant of left ventricular relaxation using the continuous-wave Doppler velocity profile of mitral regurgitation. Circulation. 1992;86(1):272–8.

    Article  CAS  PubMed  Google Scholar 

  16. Torrent-Guasp F, Kocica MJ, Corno A, Komeda M, Cox J, Flotats A, et al. Systolic ventricular filling. Eur J Cardiothorac Surg. 2004;25(3):376–86.

    Article  PubMed  Google Scholar 

  17. Anderson RH, Ho SY, Sanchez-Quintana D, Redmann K, Lunkenheimer PP. Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes. Anat Rec A Discov Mol Cell Evol Biol 2006;288(6):579–86.

  18. MacIver DH, Stephenson RS, Jensen B, Agger P, Sánchez-Quintana D, Jarvis JC, et al. The end of the unique myocardial band: part I. Anatomical considerations Eur J Cardiothorac Surg. 2018;53(1):112–9.

    Article  PubMed  Google Scholar 

  19. Brutsaert DL, Sys SU, Gillebert TC. Diastolic failure: pathophysiology and therapeutic implications. J Am Coll Cardiol. 1993;22(1):318–25.

    Article  CAS  PubMed  Google Scholar 

  20. Mora V, Roldan I, Sauri Assumpcio, Fernandez-Galera R, Monteagudo M, Romero E, et al. Correspondence of myocardial strain with Torrent-Guasp’s theory. Contributions of new echocardiographic parameters. Rev Argent Cardiol 2016;84:541–549.

  21. D'hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 2000;1(3):154–70.

  22. Gorcsan J 3rd, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol. 2011;58(14):1401–13.

    Article  PubMed  Google Scholar 

  23. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27(9):911–39.

    Article  PubMed  Google Scholar 

  24. Čelutkienė J, Lainscak M, Anderson L, Gayat E, Grapsa J, Harjola VP, et al. Imaging in patients with suspected acute heart failure: timeline approach position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22(2):181–95.

    Article  PubMed  Google Scholar 

  25. Park JJ, Park JB, Park JH, Cho GY. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018;71(18):1947–57.

    Article  PubMed  Google Scholar 

  26. Sengeløv M, Jørgensen PG, Jensen JS, Bruun NE, Olsen FJ, Fritz-Hansen T, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging. 2015;8(12):1351–9.

    Article  PubMed  Google Scholar 

  27. Mele D, Nardozza M, Malagù M, Leonetti E, Fragale C, Rondinella A, et al. Left ventricular lead position guided by parametric strain echocardiography improves response to cardiac resynchronization therapy. J Am Soc Echocardiogr. 2017;30(10):1001–11.

    Article  PubMed  Google Scholar 

  28. Park JH, Park JJ, Park JB, Cho GY. Prognostic value of biventricular strain in risk stratifying in patients with acute heart failure. J Am Heart Assoc 2018;7(19):e009331.

  29. van Kessel M, Seaton D, Chan J, Yamada A, Kermeen F, Hamilton-Craig C, et al. Prognostic value of right ventricular free wall strain in pulmonary hypertension patients with pseudo-normalized tricuspid annular plane systolic excursion values. Int J Cardiovasc Imaging. 2016;32(6):905–12.

    Article  PubMed  Google Scholar 

  30. Lisi M, Cameli M, Righini FM, Malandrino A, Tacchini D, Focardi M, et al. RV Longitudinal deformation correlates with myocardial fibrosis in patients with end-stage heart failure. JACC Cardiovasc Imaging. 2015;8(5):514–22.

    Article  PubMed  Google Scholar 

  31. Mingo-Santos S, Moñivas-Palomero V, Garcia-Lunar I, Mitroi CD, Goirigolzarri-Artaza J, Rivero B, et al. Usefulness of two-dimensional strain parameters to diagnose acute rejection after heart transplantation. J Am Soc Echocardiogr. 2015;28(10):1149–56.

    Article  PubMed  Google Scholar 

  32. Cameli M, Sparla S, Focardi M, Righini FM, Solari M, Alvino F, et al. Evaluation of right ventricular function in the management of patients referred for left ventricular assist device therapy. Transplant Proc. 2015;47(7):2166–8.

    Article  CAS  PubMed  Google Scholar 

  33. Saba S, Marek J, Schwartzman D, Jain S, Adelstein E, White P, et al. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region Trial. Circ Heart Fail. 2013;6(3):427–34.

    Article  CAS  PubMed  Google Scholar 

  34. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O’Halloran D, Elsik M, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012;59:1509–18.

    Article  PubMed  Google Scholar 

  35. Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8.

    Article  PubMed  Google Scholar 

  36. DeVore AD, McNulty S, Alenezi F, Ersboll M, Vader JM, Oh JK, et al. Impaired left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: insights from the RELAX Trial. Eur J Heart Fail. 2017;19(7):893–900.

    Article  PubMed  CAS  Google Scholar 

  37. Luszczak J, Olszowska M, Drapisz S, Plazak W, Kaznica-Wiatr M, Karch I, et al. Assessment of left ventricle function in aortic stenosis: mitral annular plane systolic excursion is not inferior to speckle tracking echocardiography derived global longitudinal peak strain. Cardiovasc Ultrasound. 2013;11:45.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Grapsa J. Left ventricular ejection fraction and global longitudinal strain: prognostic when not load dependent? J Am Coll Cardiol. 2018;72(9):1065–6.

    Article  PubMed  Google Scholar 

  39. Thomas JD, Badano LP. EACVI-ASE-industry initiative to standardize deformation imaging: a brief update from the co-chairs. Eur Heart J Cardiovasc Imaging. 2013;14(11):1039–40.

    Article  PubMed  Google Scholar 

  40. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28(2):183–93.

    Article  PubMed  Google Scholar 

  41. Ünlü S, Mirea O, Duchenne J, Pagourelias ED, Bézy S, Thomas JD, et al. Comparison of feasibility, accuracy, and reproducibility of layer-specific global longitudinal strain measurements among five different vendors: a report from the EACVI-ASE Strain Standardization Task Force. J Am Soc Echocardiogr. 2018;31(3):374-380.e1.

    Article  PubMed  Google Scholar 

  42. Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22(3):391–412.

    Article  PubMed  Google Scholar 

  43. Sugimoto T, Robinet S, Dulgheru R, Bernard A, Ilardi F, Contu L, et al; NORRE Study. Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE Study. Eur Heart J Cardiovasc Imaging 2018;19(6):630–638.

  44. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147-239.

    Article  PubMed  Google Scholar 

  45. Lancellotti P, Suter TM, López-Fernández T, Galderisi M, Lyon AR, Van der Meer P, et al R. Cardio-oncology services: rationale, organization, and implementation. Eur Heart J 2019;40(22):1756–1763.

  46. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al; ESC Scientific Document Group. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 2016;37(36):2768–2801.

  47. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  CAS  PubMed  Google Scholar 

  48. Santoro C, Arpino G, Esposito R, Lembo M, Paciolla I, Cardalesi C, et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility. Eur Heart J Cardiovasc Imaging. 2017;18(8):930–6.

    Article  PubMed  Google Scholar 

  49. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 2014;63(25 Pt A):2751–68.

  50. Santoro C, Esposito R, Lembo M, Sorrentino R, De Santo I, Luciano F, et al. Strain-oriented strategy for guiding cardioprotection initiation of breast cancer patients experiencing cardiac dysfunction. Eur Heart J Cardiovasc Imaging. 2019;20(12):1345–52.

    Article  PubMed  Google Scholar 

  51. Negishi T, Thavendiranathan P, Negishi K, Marwick TH; SUCCOUR investigators. Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOUR Trial. JACC Cardiovasc Imaging 2018;11(8):1098–1105.

  52. Lancellotti P, Price S, Edvardsen T, Cosyns B, Neskovic AN, Dulgheru R, et al. The use of echocardiography in acute cardiovascular care: recommendations of the European Association of Cardiovascular Imaging and the Acute Cardiovascular Care Association. Eur Heart J Cardiovasc Imaging. 2014;16:119–46.

    Article  PubMed  Google Scholar 

  53. Roshdy A, Francisco N, Rendon A, Gillon S, Walker D. CRITICAL CARE ECHO ROUNDS: haemodynamic instability. Echo Res Pract. 2014;1(1):D1-8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Price S, Platz E, Cullen L, Tavazzi G, Christ M, Cowie MR, et al; Acute Heart Failure Study Group of the European Society of Cardiology Acute Cardiovascular Care Association. Expert consensus document: echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat Rev Cardiol 2017;14(7):427–440.

  55. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33(7):1125–32.

    Article  PubMed  Google Scholar 

  56. Trambaiolo P, Bertini P, Borrelli N, Poli M, Romano S, Ferraiuolo G, et al. Evaluation of ventriculo-arterial coupling in ST elevation myocardial infarction with left ventricular dysfunction treated with levosimendan. Int J Cardiol. 2019;288:1–4.

    Article  PubMed  Google Scholar 

  57. Haugaa KH, Grenne BL, Eek CH, Ersbøll M, Valeur N, Svendsen JH, et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging. 2013;6(8):841–50.

    Article  PubMed  Google Scholar 

  58. Haugaa KH, Goebel B, Dahlslett T, Meyer K, Jung C, Lauten A, et al. Risk assessment of ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy by strain echocardiography. J Am Soc Echocardiogr. 2012;25(6):667–73.

    Article  PubMed  Google Scholar 

  59. Potter E, Marwick TH. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging. 2018;11:260–74.

    Article  PubMed  Google Scholar 

  60. Halliday B, Gulati A, Ali A, Guha K, Newsome S, Arzanauskaite M, et al. Association between mid-wall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation. 2017;135:2106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sanna GD, Merlo M, Moccia E, Fabris E, Masia SL, Finocchiaro G, et al. Left bundle branch block-induced cardiomyopathy: a diagnostic proposal for a poorly explored pathological entity. Int J Cardiol. 2020;299:199–205.

    Article  PubMed  Google Scholar 

  62. Hwang IC, Cho GY, Yoon YE, Park JJ. Association between global longitudinal strain and cardiovascular events in patients with left bundle branch block assessed using two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2018;31(1):52-63.e6.

    Article  PubMed  Google Scholar 

  63. Terrosu P. An unsolved conundrum: right ventricular dysfunction. J Cardiovasc Med (Hagerstown). 2017;18(Suppl 1):e44–9.

    Article  Google Scholar 

  64. Tamborini G, Muratori M, Brusoni D, Celeste F, Maffessanti F, Caiani EG, et al. Is right ventricular systolic function reduced after cardiac surgery? A two- and three-dimensional echocardiographic study. Eur J Echocardiogr. 2009;10(5):630–4.

    Article  PubMed  Google Scholar 

  65. Giusca S, Dambrauskaite V, Scheurwegs C, D'hooge J, Claus P, Herbots L, et al. Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart 2010;96(4):281–8.

  66. Mandoli GE, Cameli M, Novo G, Agricola E, Righini FM, Santoro C, et al; Working Group of Echocardiography of the Italian Society of Cardiology. Right ventricular function after cardiac surgery: the diagnostic and prognostic role of echocardiography. Heart Fail Rev 2019;24(5):625–635.

  67. Pastore MC, De Carli G, Mandoli GE, D’Ascenzi F, Focardi M, Contorni F, et al. The prognostic role of speckle tracking echocardiography in clinical practice: evidence and reference values from the literature. Heart Fail Rev. 2020. https://doi.org/10.1007/s10741-020-09945-9.

    Article  PubMed  Google Scholar 

  68. Rapezzi C, Fontana M. Relative left ventricular apical sparing of longitudinal strain in cardiac amyloidosis: is it just amyloid infiltration? JACC Cardiovasc Imaging. 2019;12(7 Pt 1):1174–6.

    Article  PubMed  Google Scholar 

  69. Sanna GD, Nusdeo G, Piras MR, Forteleoni A, Murru MR, Saba PS, et al. Cardiac abnormalities in Alzheimer disease: clinical relevance beyond pathophysiological rationale and instrumental findings? JACC Heart Fail. 2019;7(2):121–8.

    Article  PubMed  Google Scholar 

  70. Serri K, Reant P, Lafitte M, Berhouet M, Le Bouffos V, Roudaut R, et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;47(6):1175–81.

    Article  PubMed  Google Scholar 

  71. Saito M, Okayama H, Yoshii T, Higashi H, Morioka H, Hiasa G, et al. Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2012;13(7):617–23.

    Article  PubMed  Google Scholar 

  72. Tower-Rader A, Mohananey D, To A, Lever HM, Popovic ZB, Desai MY. Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy: a systematic review of existing literature. JACC Cardiovasc Imaging. 2019;12(10):1930–42.

    Article  PubMed  Google Scholar 

  73. de Simone G, Devereux RB, Roman MJ, Ganau A, Saba PS, Alderman MH, et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol. 1994;23(6):1444–51.

    Article  PubMed  Google Scholar 

  74. Lembo M, Santoro C, Sorrentino R, Canonico ME, Fazio V, Trimarco B, Tadic M, Galderisi M, Esposito R. Interrelation between midwall mechanics and longitudinal strain in newly diagnosed and never-treated hypertensive patients without clinically defined hypertrophy. J Hypertens. 2020;38(2):295–302.

    Article  CAS  PubMed  Google Scholar 

  75. Modin D, Biering-Sørensen SR, Mogelvang R, Landler N, Jensen JS, Biering-Sørensen T. Prognostic value of echocardiography in hypertensive versus nonhypertensive participants from the general population. Hypertension. 2018;71(4):742–51.

    Article  CAS  PubMed  Google Scholar 

  76. Herrmann S, Störk S, Niemann M, Lange V, Strotmann JM, Frantz S, et al. Low-gradient aortic valve stenosis myocardial fibrosis and its influence on function and outcome. J Am Coll Cardiol. 2011;58(4):402–12.

    Article  PubMed  Google Scholar 

  77. Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, et al. Variability and reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE strain standardization task force. JACC Cardiovasc Imaging. 2018;11:15–24.

    Article  PubMed  Google Scholar 

  78. Sperry BW, Sato K, Phelan D, Grimm R, Desai MY, Hanna M, et al. Regional variability in longitudinal strain across vendors in patients with cardiomyopathy due to increased left ventricular wall thickness. Circ Cardiovasc Imaging 2019;12(8):e008973.

  79. Freed BH, Daruwalla V, Cheng JY, Aguilar FG, Beussink L, Choi A, et al. Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circ Cardiovasc Imaging 2016;9(3):https://doi.org/10.1161/CIRCIMAGING.115.003754 e003754.

  80. Gupta DK, Shah AM, Giugliano RP, Ruff CT, Antman EM, Grip LT, et al; Effective aNticoaGulation with factor xA next GEneration in AF-Thrombolysis In Myocardial Infarction 48 Echocardiographic Study Investigators. Left atrial structure and function in atrial fibrillation: ENGAGE AF-TIMI 48. Eur Heart J 2014;35(22):1457–65.

  81. Mondillo S, Cameli M, Caputo ML, Lisi M, Palmerini E, Padeletti M, et al. Early detection of left atrial strain abnormalities by speckle-tracking in hypertensive and diabetic patients with normal left atrial size. J Am Soc Echocardiogr. 2011;24(8):898–908.

    Article  PubMed  Google Scholar 

  82. Sugimoto T, Bandera F, Generati G, Alfonzetti E, Bussadori C, Guazzi M. Left atrial function dynamics during exercise in heart failure: pathophysiological implications on the right heart and exercise ventilation inefficiency. JACC Cardiovasc Imaging 2017;10(10 Pt B):1253–1264.

  83. Al Saikhan L, Hughes AD, Chung WS, Alsharqi M, Nihoyannopoulos P. Left atrial function in heart failure with mid-range ejection fraction differs from that of heart failure with preserved ejection fraction: a 2D speckle-tracking echocardiographic study. Eur Heart J Cardiovasc Imaging. 2019;20(3):279–90.

    Article  PubMed  Google Scholar 

  84. Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014;63(6):493–505.

    Article  PubMed  Google Scholar 

  85. Badano LP, Miglioranza MH, Mihăilă S, Peluso D, Xhaxho J, Marra MP, et al. Left atrial volumes and function by three-dimensional echocardiography: reference values, accuracy, reproducibility, and comparison with two-dimensional echocardiographic measurements. Circ Cardiovasc Imaging 2016;9(7):e004229.

  86. Sorrell VL. Citation inflation: when the adoption of a new technique becomes an avenue for publication. Echocardiography. 2016;33(9):1282–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GDS, MEC, and MG†: conceptualization; GDS, MEC, CS, RE, and SLM: literature search and data analysis; GDS, MC, CS, RE, SLM, and MG: manuscript drafting; GP and PN: manuscript critical revision as senior authors. All the authors were actively involved in all the stages of the project.

Corresponding author

Correspondence to Giuseppe D. Sanna.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable (not required for this type of article).

Consent for Publication

Not applicable for this type of manuscript.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging in Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanna, G.D., Canonico, M.E., Santoro, C. et al. Echocardiographic Longitudinal Strain Analysis in Heart Failure: Real Usefulness for Clinical Management Beyond Diagnostic Value and Prognostic Correlations? A Comprehensive Review. Curr Heart Fail Rep 18, 290–303 (2021). https://doi.org/10.1007/s11897-021-00530-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-021-00530-1

Keywords

Navigation