Skip to main content
Log in

Familial MPN Predisposition

  • Myeloproliferative Neoplasms (B Stein, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Chronic myeloproliferative neoplasms (MPN) characteristically arise from a somatic mutation in the pluripotent hematopoietic stem cell, and most common recurring mutations are in the JAK2, CALR, and cMPL genes. However, these mutations are not founder mutations, but mainly drive the disease phenotype and a pre-existing germline predisposition has been long speculated, but has not been clearly defined to date. Genome-wide association studies in family clusters of MPN have identified a number of genetic variants that are associated with increased germline risk for developing clonal MPN. The strongest association discovered so far is the presence of JAK2 46/1 haplotype, and subsequently, many studies have found additional variants in other genes, most notably in TERT gene. However, these still account for a small fraction of familial MPN, and more in-depth studies including whole genome sequencing are needed to gain better insight into familial genetic predisposition of clonal MPNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med. 2012;367(10):922–30. First description of congenital polycythemia associated with HIF2a gain-of-function mutation that is not detectable by analysis of blood DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lorenzo FR, Yang C, Ng Tang Fui M, Vankayalapati H, Zhuang Z, Huynh T, et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med (Berl). 2013;91(4):507–12.

    Article  CAS  Google Scholar 

  3. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  4. •• Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Lay M, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci U S A. 2006;103(16):6224–9. First rigorous proof that PV originates from a pluripotent stem cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. •• Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood. 2003;102(10):3793–6. First description that those subjects with proven polycythemia vera have increased probability of family clustering and presumably genetic germline predisposition.

    Article  CAS  PubMed  Google Scholar 

  6. Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014;124(16):2507–2513; quiz 615.

  8. •• Kralovics R, Guan Y, Prchal JT. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol. 2002;30(3):229–36. First description of acquired somatic uniparental disomy that leads to identification of mutated JAK2 gene.

    Article  CAS  PubMed  Google Scholar 

  9. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  10. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    Article  CAS  PubMed  Google Scholar 

  11. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    Article  CAS  PubMed  Google Scholar 

  12. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.

    Article  CAS  PubMed  Google Scholar 

  13. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90.

    Article  CAS  PubMed  Google Scholar 

  15. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8.

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Swierczek SI, Drummond J, Hickman K, Kim SJ, Walker K, et al. Whole-exome sequencing of polycythemia vera revealed novel driver genes and somatic mutation shared by T cells and granulocytes. Leukemia. 2014;28(4):935–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112(6):2199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spivak JL, Considine M, Williams DM, Talbot CC Jr, Rogers O, Moliterno AR, et al. Two clinical phenotypes in polycythemia vera. N Engl J Med. 2014;371(9):808–17.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Swierczek SI, Piterkova L, Jelinek J, Agarwal N, Hammoud S, Wilson A, et al. Methylation of AR locus does not always reflect X chromosome inactivation state. Blood. 2012;119(13):e100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41(4):446–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet. 2009;41(4):455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41(4):450–4.

    Article  CAS  PubMed  Google Scholar 

  24. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C, et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood. 2006;108(1):346–52.

    Article  CAS  PubMed  Google Scholar 

  25. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108(5):1652–60.

    Article  CAS  PubMed  Google Scholar 

  26. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107(11):4274–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One. 2006;1:e18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cabagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127(3):333–42.

    Article  CAS  PubMed  Google Scholar 

  29. Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127(3):325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lanikova L, Babosova O, Swierczek S, Wang L, Wheeler DA, Divoky V, et al. Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in polycythemia vera. Blood. 2016;128(18):2266–70.

    Article  CAS  PubMed  Google Scholar 

  31. Olcaydu D, Rumi E, Harutyunyan A, Passamonti F, Pietra D, Pascutto C, et al. The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica. 2011;96(3):367–74.

    Article  CAS  PubMed  Google Scholar 

  32. Oddsson A, Kristinsson SY, Helgason H, Gudbjartsson DF, Masson G, Sigurdsson A, et al. The germline sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia. 2014;28(6):1371–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jager R, Harutyunyan AS, Rumi E, Pietra D, Berg T, Olcaydu D, et al. Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. Am J Hematol. 2014;89(12):1107–10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hirvonen EAM, Pitkanen E, Hemminki K, Aaltonen LA, Kilpivaara O. Whole-exome sequencing identifies novel candidate predisposition genes for familial polycythemia vera. Hum Genomics. 2017;11(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harutyunyan AS, Giambruno R, Krendl C, Stukalov A, Klampfl T, Berg T, et al. Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood. 2016;127(3):362–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015;6:6691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128(8):1121–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiang YH, Chang YC, Lin HC, Huang L, Cheng CC, Wang WT, et al. Germline variations at JAK2, TERT, HBS1L-MYB and MECOM and the risk of myeloproliferative neoplasms in Taiwanese population. Oncotarget. 2017; https://doi.org/10.18632/oncotarget.19211.

  39. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A, et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood. 2005;106(10):3374–6.

    Article  CAS  PubMed  Google Scholar 

  40. Nussenzveig RH, Swierczek SI, Jelinek J, Gaikwad A, Liu E, Verstovsek S, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol. 2007;35(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  41. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011;29(10):1356–63.

    Article  CAS  PubMed  Google Scholar 

  42. Vaidya R, Gangat N, Jimma T, Finke CM, Lasho TL, Pardanani A, et al. Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. Am J Hematol. 2012;87(11):1003–5.

    Article  CAS  PubMed  Google Scholar 

  43. Pourcelot E, Trocme C, Mondet J, Bailly S, Toussaint B, Mossuz P. Cytokine profiles in polycythemia vera and essential thrombocythemia patients: clinical implications. Exp Hematol. 2014;42(5):360–8.

    Article  CAS  PubMed  Google Scholar 

  44. Fleischman AG, Aichberger KJ, Luty SB, Bumm TG, Petersen CL, Doratotaj S, et al. TNF alpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118(24):6392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasselbalch HC. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res. 2013;37(2):214–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef T. Prchal.

Ethics declarations

Conflict of Interest

Tsewang Tashi, Sabina Swierczek, and Josef Prchal each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

Tsewang Tashi and Sabina Swierczek have equal credit to this study.

This article is part of the Topical Collection on Myeloproliferative Neoplasms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashi, T., Swierczek, S. & Prchal, J.T. Familial MPN Predisposition. Curr Hematol Malig Rep 12, 442–447 (2017). https://doi.org/10.1007/s11899-017-0414-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-017-0414-x

Keywords

Navigation