Skip to main content

Advertisement

Log in

The Role of Interleukin-10 in the Pathophysiology of Preeclampsia

  • Preeclampsia (VD Garovic, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The pathophysiology of preeclampsia is complex and not entirely understood. A key feature in preeclampsia development is an immunological imbalance that shifts the maternal immune response from one of tolerance towards one promoting chronic inflammation and endothelial dysfunction. As a key regulator of immunity, IL-10 not only has immunomodulatory activity, but also directly benefits vasculature and promotes successful cellular interactions at the maternal-fetal interface. Here we focus on the mechanisms by which the dysregulation of IL-10 may contribute to the pathophysiology of preeclampsia.

Recent Findings

Dysregulation of IL-10 has been demonstrated in various animal models of preeclampsia. Decreased IL-10 production in both placenta and peripheral blood mononuclear cells has been reported in human studies, but with inconsistent results.

Summary

The significance of IL-10 in preeclampsia has shifted from a key biomarker to one with therapeutic potential. As such, a better understanding of the role of this cytokine in the pathophysiology of preeclampsia is of paramount importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roberts JMAP, Bakris G, Barton JR, Bernstein IM, Druzin M, et al. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. https://doi.org/10.1097/01.aog.0000437382.03963.88.

    Article  Google Scholar 

  2. George EM, Granger JP. Recent insights into the pathophysiology of preeclampsia. Expert review of obstetrics & gynecology. 2010;5(5):557–66. https://doi.org/10.1586/eog.10.45.

    Article  Google Scholar 

  3. von Dadelszen P, Magee LA, Roberts JM. Subclassification of Preeclampsia. Hypertens. 2003;22(2):143–8. https://doi.org/10.1081/PRG-120021060.

    Article  Google Scholar 

  4. Ogge G, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Yeo L, et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med. 2011;39(6):641–52. https://doi.org/10.1515/JPM.2011.098.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kovo M, Schreiber L, Ben-Haroush A, Gold E, Golan A, Bar J. The placental component in early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat Diagn. 2012;32(7):632–7. https://doi.org/10.1002/pd.3872.

    Article  PubMed  Google Scholar 

  6. Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30(Suppl A):S32–7. https://doi.org/10.1016/j.placenta.2008.11.009.

    Article  PubMed  CAS  Google Scholar 

  7. Paruk F, Moodley J. Maternal and neonatal outcome in early- and late-onset pre-eclampsia. Seminars in neonatology : SN. 2000;5(3):197–207. https://doi.org/10.1053/siny.2000.0023.

    Article  CAS  PubMed  Google Scholar 

  8. Myatt L, Redman CW, Staff AC, Hansson S, Wilson ML, Laivuori H, et al. Strategy for standardization of preeclampsia research study design. Hypertension. 2014;63(6):1293–301. https://doi.org/10.1161/hypertensionaha.113.02664.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts JM, Gammill HS. Preeclampsia: recent insights. Hypertension. 2005;46(6):1243–9. https://doi.org/10.1161/01.HYP.0000188408.49896.c5.

    Article  CAS  PubMed  Google Scholar 

  10. Sowmya S, Sri Manjari K, Ramaiah A, Sunitha T, Nallari P, Jyothy A, et al. Interleukin 10 gene promoter polymorphisms in women with early-onset pre-eclampsia. Clin Exp Immunol. 2014;178(2):334–41. https://doi.org/10.1111/cei.12402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbert JS, Ryan MJ, LaMarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2008;294(2):H541–50. https://doi.org/10.1152/ajpheart.01113.2007.

    Article  CAS  PubMed  Google Scholar 

  12. •• Harmon A, Cornelius D, Amaral L, Paige A, Herse F, Ibrahim T, et al. IL-10 supplementation increases Tregs and decreases hypertension in the RUPP rat model of preeclampsia. Hypertens. 2015;34(3):291–306. https://doi.org/10.3109/10641955.2015.1032054. This article describes the mechanisms through which IL-10 treatment in a rat model of PE decreases blood pressure.

    Article  CAS  Google Scholar 

  13. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Seminars in reproductive medicine. 2007;25(1):21–39. https://doi.org/10.1055/s-2006-956773.

    Article  CAS  PubMed  Google Scholar 

  14. Romero R, Nien JK, Espinoza J, Todem D, Fu W, Chung H, et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 2008;21(1):9–23. https://doi.org/10.1080/14767050701830480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freeman DJ, McManus F, Brown EA, Cherry L, Norrie J, Ramsay JE, et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension. 2004;44(5):708–14. https://doi.org/10.1161/01.HYP.0000143849.67254.ca.

    Article  CAS  PubMed  Google Scholar 

  16. Romagnani S. T-cell subsets (Th1 versus Th2). Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2000;85(1):9–18; quiz , 21. https://doi.org/10.1016/s1081-1206(10)62426-x.

    Article  CAS  Google Scholar 

  17. Saito S, Sakai M. Th1/Th2 balance in preeclampsia. J Reprod Immunol. 2003;59(2):161–73. https://doi.org/10.1016/S0165-0378%2803%2900045-7.

    Article  CAS  PubMed  Google Scholar 

  18. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunology today. 1993;14(7):353–6. https://doi.org/10.1016/0167-5699(93)90235-d.

    Article  CAS  PubMed  Google Scholar 

  19. Quinn KH, Lacoursiere DY, Cui L, Bui J, Parast MM. The unique pathophysiology of early-onset severe preeclampsia: role of decidual T regulatory cells. J Reprod Immunol. 2011;91(1-2):76–82. https://doi.org/10.1016/j.jri.2011.05.006.

    Article  CAS  PubMed  Google Scholar 

  20. D'Addio F, Riella LV, Mfarrej BG, Chabtini L, Adams LT, Yeung M, et al. The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. J Immunol. 2011;187(9):4530–41. https://doi.org/10.4049/jimmunol.1002031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Habicht A, Dada S, Jurewicz M, Fife BT, Yagita H, Azuma M, et al. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol. 2007;179(8):5211–9.

    Article  CAS  PubMed  Google Scholar 

  22. Alijotas-Reig J, Llurba E, Gris JM. Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta. 2014;35(4):241–8. https://doi.org/10.1016/j.placenta.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  23. Hanna N, Hanna I, Hleb M, Wagner E, Dougherty J, Balkundi D, et al. Gestational age-dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts. J Immunol. 2000;164(11):5721–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hashii K, Fujiwara H, Yoshioka S, Kataoka N, Yamada S, Hirano T, et al. Peripheral blood mononuclear cells stimulate progesterone production by luteal cells derived from pregnant and non-pregnant women: possible involvement of interleukin-4 and interleukin-10 in corpus luteum function and differentiation. Human reproduction (Oxford, England). 1998;13(1o):2738–44.

    Article  CAS  Google Scholar 

  25. Kruse N, Greif M, Moriabadi NF, Marx L, Toyka KV, Rieckmann P. Variations in cytokine mRNA expression during normal human pregnancy. Clin Exp Immunol. 2000;119(2):317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Darmochwal-Kolarz D, Leszczynska-Gorzelak B, Rolinski J, Oleszczuk J. T helper 1- and T helper 2-type cytokine imbalance in pregnant women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 1999;86(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  27. Darmochwal-Kolarz D, Rolinski J, Leszczynska-Goarzelak B, Oleszczuk J. The expressions of intracellular cytokines in the lymphocytes of preeclamptic patients. Am J Reprod Immunol. 2002;48(6):381–6.

    Article  PubMed  Google Scholar 

  28. •• Ferguson KK, Meeker JD, McElrath TF, Mukherjee B, Cantonwine DE. Repeated measures of inflammation and oxidative stress biomarkers in preeclamptic and normotensive pregnancies. American Journal of Obstetrics and Gynecology. 2017;216(5):527.e1–9. https://doi.org/10.1016/j.ajog.2016.12.174. This article describes a longitudinal study that examined levels of various biomarkers including IL-10 in a large patient population.

    Article  CAS  Google Scholar 

  29. Del Gobbo V, Giganti MG, Zenobi R, Villani V, Premrov MG. The immunosuppressive cytokines influence the fetal survival in patients with pregnancy-induced hypertension. Am J Reprod Immunol. 2000;44(4):214–21.

    Article  PubMed  Google Scholar 

  30. Yang SW, Kwon HS, Sohn IS, Hwang HS, Kim YH, Cho KJ, et al. DC-SIGN expression in Hofbauer cells may play an important role in immune tolerance in fetal chorionic villi during the development of preeclampsia. Am J Reprod Immunol. 2017;78:72. https://doi.org/10.1016/j.jri.2017.09.012.

    Article  CAS  Google Scholar 

  31. Wilczynski JR, Tchorzewski H, Glowacka E, Banasik M, Lewkowicz P, Szpakowski M, et al. Cytokine secretion by decidual lymphocytes in transient hypertension of pregnancy and pre-eclampsia. Mediators Inflamm. 2002;11(2):105–11. https://doi.org/10.1080/09629350220131962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Chen W, Qian L, Wu F, Li M, Wang H. Significance of Toll-like Receptor 4 Signaling in Peripheral Blood Monocytes of Pre-eclamptic Patients. Hypertens. 2015;34(4):486–94. https://doi.org/10.3109/10641955.2015.1077860. This article confirms decreased IL-10 secretion by peripheral blood monocytes in preeclamptic patients.

    Article  CAS  Google Scholar 

  33. Medeiros LT, Peracoli JC, Bannwart-Castro CF, Romao M, Weel IC, Golim MA, et al. Monocytes from pregnant women with pre-eclampsia are polarized to a M1 phenotype. Am J Reprod Immunol. 2014;72(1):5–13. https://doi.org/10.1111/aji.12222.

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki Y, Darmochwal-Kolarz D, Suzuki D, Sakai M, Ito M, Shima T, et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin Exp Immunol. 2007;149(1):139–45. https://doi.org/10.1111/j.1365-2249.2007.03397.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moore KW, de Waal MR, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annual review of immunology. 2001;19:683–765. https://doi.org/10.1146/annurev.immunol.19.1.683.

    Article  CAS  PubMed  Google Scholar 

  36. Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nature reviews Immunology. 2010;10(3):170–81. https://doi.org/10.1038/nri2711.

    Article  CAS  PubMed  Google Scholar 

  37. Weel IC, Baergen RN, Romao-Veiga M, Borges VT, Ribeiro VR, Witkin SS, et al. Association between placental lesions, cytokines and angiogenic factors in pregnant women with preeclampsia. PLoS ONE. 2016;11(6):e0157584. https://doi.org/10.1371/journal.pone.0157584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. LaMarca B, Cornelius DC, Harmon AC, Amaral LM, Cunningham MW, Faulkner JL, et al. Identifying immune mechanisms mediating the hypertension during preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology. 2016;311(1):R1–9. https://doi.org/10.1152/ajpregu.00052.2016.

    Article  Google Scholar 

  39. Aschkenazi S, Straszewski S, Verwer KM, Foellmer H, Rutherford T, Mor G. Differential regulation and function of the Fas/Fas ligand system in human trophoblast cells. Biol Reprod. 2002;66(6):1853–61.

    Article  CAS  PubMed  Google Scholar 

  40. White CA, Johansson M, Roberts CT, Ramsay AJ, Robertson SA. Effect of interleukin-10 null mutation on maternal immune response and reproductive outcome in mice. Biol Reprod. 2004;70(1):123–31. https://doi.org/10.1095/biolreprod.103.018754.

    Article  CAS  PubMed  Google Scholar 

  41. Rijhsinghani AG, Thompson K, Tygrette L, Bhatia SK. Inhibition of interleukin-10 during pregnancy results in neonatal growth retardation. Am J Reprod Immunol. 1997;37(3):232–5.

    Article  CAS  PubMed  Google Scholar 

  42. Lei J, Firdaus W, Rosenzweig JM, Alrebh S, Bakhshwin A, Borbiev T, et al. Murine model: maternal administration of stem cells for prevention of prematurity. Am J Obstet Gynecol. 2015;212(5):639.e1–10. https://doi.org/10.1016/j.ajog.2014.12.032.

    Article  Google Scholar 

  43. Zhang M, Xu J, Bao X, Niu W, Wang L, Du L, et al. Association between Genetic Polymorphisms in Interleukin Genes and Recurrent Pregnancy Loss - A Systematic Review and Meta-Analysis. PLoS ONE. 2017;12(1):e0169891. https://doi.org/10.1371/journal.pone.0169891.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mertz PM, DeWitt DL, Stetler-Stevenson WG, Wahl LM. Interleukin 10 suppression of monocyte prostaglandin H synthase-2. Mechanism of inhibition of prostaglandin-dependent matrix metalloproteinase production. The Journal of biological chemistry. 1994;269(33):21322–9.

    CAS  PubMed  Google Scholar 

  45. Ghildyal N, McNeil HP, Gurish MF, Austen KF, Stevens RL. Transcriptional regulation of the mucosal mast cell-specific protease gene, MMCP-2, by interleukin 10 and interleukin 3. The Journal of biological chemistry. 1992;267(12):8473–7.

    CAS  PubMed  Google Scholar 

  46. Royle C, Lim S, Xu B, Tooher J, Ogle R, Hennessy A. Effect of hypoxia and exogenous IL-10 on the pro-inflammatory cytokine TNF-alpha and the anti-angiogenic molecule soluble Flt-1 in placental villous explants. Cytokine. 2009;47(1):56–60. https://doi.org/10.1016/j.cyto.2009.04.006.

    Article  CAS  PubMed  Google Scholar 

  47. Bowen RS, Gu Y, Zhang Y, Lewis DF, Wang Y. Hypoxia promotes interleukin-6 and -8 but reduces interleukin-10 production by placental trophoblast cells from preeclamptic pregnancies. J Soc Gynecol Investig. 2005;12(6):428–32. https://doi.org/10.1016/j.jsgi.2005.04.001.

    Article  CAS  PubMed  Google Scholar 

  48. Kamali-Sarvestani E, Kiany S, Gharesi-Fard B, Robati M. Association study of IL-10 and IFN-gamma gene polymorphisms in Iranian women with preeclampsia. J Reprod Immunol. 2006;72(1-2):118–26. https://doi.org/10.1016/j.jri.2006.04.001.

    Article  CAS  PubMed  Google Scholar 

  49. Hennessy A, Pilmore HL, Simmons LA, Painter DM. A deficiency of placental IL-10 in preeclampsia. J Immunol. 1999;163(6):3491–5.

    CAS  PubMed  Google Scholar 

  50. • Chatterjee P, Chiasson VL, Kopriva SE, Young KJ, Chatterjee V, Jones KA, et al. Interleukin 10 deficiency exacerbates toll-like receptor 3-induced preeclampsia-like symptoms in mice. Hypertension. 2011;58(3):489–96. https://doi.org/10.1161/HYPERTENSIONAHA.111.172114. This article emphasized the role of IL-10 in preeclampsia by showing an exacerbated preeclampsia-phenotype in IL-10 deficient mice.

    Article  CAS  PubMed  Google Scholar 

  51. Park SH, Kim KE, Hwang HY, Kim TY. Regulatory effect of SOCS on NF-kappaB activity in murine monocytes/macrophages. DNA and cell biology. 2003;22(2):131–9. https://doi.org/10.1089/104454903321515931.

    Article  CAS  PubMed  Google Scholar 

  52. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, et al. A family of cytokine-inducible inhibitors of signalling. Nature. 1997;387(6636):917–21. https://doi.org/10.1038/43206.

    Article  CAS  PubMed  Google Scholar 

  53. Larsen L, Ropke C. Suppressors of cytokine signalling: SOCS. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2002;110(12):833–44.

    Article  CAS  PubMed  Google Scholar 

  54. Berlato C, Cassatella MA, Kinjyo I, Gatto L, Yoshimura A, Bazzoni F. Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation. J Immunol. 2002;168(12):6404–11.

    Article  CAS  PubMed  Google Scholar 

  55. Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature immunology. 2009;10(11):1178–84. https://doi.org/10.1038/ni.1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salazar Garcia MD, Mobley Y, Henson J, Davies M, Skariah A, Dambaeva S, et al. Early pregnancy immune biomarkers in peripheral blood may predict preeclampsia. J Reprod Immunol. 2018;125:25–31. https://doi.org/10.1016/j.jri.2017.10.048.

    Article  CAS  PubMed  Google Scholar 

  57. Yu J, Qian L, Wu F, Li M, Chen W, Wang H. Decreased frequency of peripheral blood CD8+CD25+FoxP3+regulatory T cells correlates with IL-33 levels in pre-eclampsia. Hypertens. 2017;36(2):217–25. https://doi.org/10.1080/10641955.2017.1302470.

  58. Heyward CY, Sones JL, Lob HE, Yuen LC, Abbott KE, Huang W, et al. The decidua of preeclamptic-like BPH/5 mice exhibits an exaggerated inflammatory response during early pregnancy. J Reprod Immunol. 2017;120:27–33. https://doi.org/10.1016/j.jri.2017.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. •• Ibrahim T, Przybyl L, Harmon AC, Amaral LM, Faulkner JL, Cornelius DC, et al. Proliferation of endogenous regulatory T cells improve the pathophysiology associated with placental ischaemia of pregnancy. Am J Reprod Immunol. 2017;78(5):10.1111/aji.12724. This article describes a study in which the stimulation of Tregs increased IL-10 and ameliorated PE-like symptoms in rats.

    Article  PubMed Central  CAS  Google Scholar 

  60. Cornelius DC, Amaral LM, Harmon A, Wallace K, Thomas AJ, Campbell N, et al. An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2015;309(8):R884–91. https://doi.org/10.1152/ajpregu.00154.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wallace K, Novotny S, Heath J, Moseley J, Martin JN Jr, Owens MY, et al. Hypertension in response to CD4(+) T cells from reduced uterine perfusion pregnant rats is associated with activation of the endothelin-1 system. Am J Physiol Regul Integr Comp Physiol. 2012;303(2):R144–9. https://doi.org/10.1152/ajpregu.00049.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zenclussen AC. A novel mouse model for preeclampsia by transferring activated th1 cells into normal pregnant mice. Methods in molecular medicine. 2006;122:401–12.

    PubMed  Google Scholar 

  63. Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nature medicine. 2008;14(8):855–62. https://doi.org/10.1038/nm.1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. •• Zhang D, Fu L, Wang L, Lin L, Yu L, Zhang L, et al. Therapeutic benefit of mesenchymal stem cells in pregnant rats with angiotensin receptor agonistic autoantibody-induced hypertension: Implications for immunomodulation and cytoprotection. Hypertens. 2017;36(3):247–58. https://doi.org/10.1080/10641955.2017.1329429. This article showed the beneficial correlation between mesenchymal stem cell treatment and IL-10 in a rat model of preeclampsia.

    Article  CAS  Google Scholar 

  65. LaMarca B, Wallace K, Herse F, Wallukat G, Martin JN Jr, Weimer A, et al. Hypertension in response to placental ischemia during pregnancy: role of B lymphocytes. Hypertension. 2011;57(4):865–71. https://doi.org/10.1161/HYPERTENSIONAHA.110.167569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sahin S, Ozakpinar OB, Eroglu M, Tulunay A, Ciraci E, Uras F, et al. The impact of platelet functions and inflammatory status on the severity of preeclampsia. J Matern Fetal Neonatal Med. 2015;28(6):643–8. https://doi.org/10.3109/14767058.2014.927860.

    Article  CAS  PubMed  Google Scholar 

  67. Pinheiro MB, Gomes KB, Ronda CR, Guimaraes GG, Freitas LG, Teixeira-Carvalho A, et al. Severe preeclampsia: association of genes polymorphisms and maternal cytokines production in Brazilian population. Cytokine. 2015;71(2):232–7. https://doi.org/10.1016/j.cyto.2014.10.021.

    Article  CAS  PubMed  Google Scholar 

  68. Campos-Canas J, Romo-Palafox I, Albani-Campanario M, Hernandez-Guerrero C. An imbalance in the production of proinflammatory and anti-inflammatory cytokines is observed in whole blood cultures of preeclamptic women in comparison with healthy pregnant women. Hypertens. 2014;33(2):236–49. https://doi.org/10.3109/10641955.2013.858744.

    Article  CAS  Google Scholar 

  69. Jonsson Y, Matthiesen L, Berg G, Ernerudh J, Nieminen K, Ekerfelt C. Indications of an altered immune balance in preeclampsia: a decrease in in vitro secretion of IL-5 and IL-10 from blood mononuclear cells and in blood basophil counts compared with normal pregnancy. J Reprod Immunol. 2005;66(1):69–84. https://doi.org/10.1016/j.jri.2005.02.002.

    Article  CAS  PubMed  Google Scholar 

  70. • Orange S, Rasko JE, Thompson JF, Vaughan J, Olive E, Pedler M, et al. Interleukin-10 regulates arterial pressure in early primate pregnancy. Cytokine. 2005;29(4):176–85. https://doi.org/10.1016/j.cyto.2004.10.011. This article demonstrated direct beneficial effects of IL-10 on vascular function in a primate-pregnancy preeclamptic model. This was one of the first studies to explore the effects of recombinant IL-10 treatment in a pregnancy-induced hypertension.

    Article  CAS  PubMed  Google Scholar 

  71. Lai Z, Kalkunte S, Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011;57(3):505–14. https://doi.org/10.1161/HYPERTENSIONAHA.110.163329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Kalkunte S, Boij R, Norris W, Friedman J, Lai Z, Kurtis J et al. Sera from preeclampsia patients elicit symptoms of human disease in mice and provide a basis for an in vitro predictive assay. Am J Pathol. 2010;177(5):2387-2398. doi:10.2353/ajpath.2010.100475. This study presents an important model of preeclampsia in IL-10 deficient mice induced by injection of preeclamptic patient serum.

  73. Tinsley JH, South S, Chiasson VL, Mitchell BM. Interleukin-10 reduces inflammation, endothelial dysfunction, and blood pressure in hypertensive pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2010;298(3):R713–9. https://doi.org/10.1152/ajpregu.00712.2009.

    Article  CAS  PubMed  Google Scholar 

  74. Kemse N, Sundrani D, Kale A, Joshi S. Maternal Micronutrients, Omega-3 Fatty Acids and Gene Expression of Angiogenic and Inflammatory Markers in Pregnancy Induced Hypertension Rats. Arch Med Res. 2017;48(5):414–22. https://doi.org/10.1016/j.arcmed.2017.10.006.

    Article  CAS  PubMed  Google Scholar 

  75. Fu L, Liu Y, Zhang D, Xie J, Guan H, Shang T. Beneficial effect of human umbilical cord-derived mesenchymal stem cells on an endotoxin-induced rat model of preeclampsia. Experimental Ther. 2015;10(5):1851–6. https://doi.org/10.3892/etm.2015.2742.

    Article  CAS  Google Scholar 

  76. Wang A, Liu Q, Zhang J, Zheng R. Berberine alleviates preeclampsia possibly by regulating the expression of interleukin-2/interleukin-10 and Bcl-2/Bax. Int J Clin Exp Med. 2015;8(9):16301–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zemse SM, Chiao CW, Hilgers RH, Webb RC. Interleukin-10 inhibits the in vivo and in vitro adverse effects of TNF-alpha on the endothelium of murine aorta. Am J Physiol Heart Circ Physiol. 2010;299(4):H1160–7. https://doi.org/10.1152/ajpheart.00763.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stefano GB, Christensen VB, Tonnesen E, Liu Y, Hughes TK Jr, Bilfinger TV. Interleukin-10 stimulation of endogenous nitric oxide release from human saphenous veins diminishes immunocyte adherence. Journal of cardiovascular pharmacology. 1997;30(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  79. Gunnett CA, Heistad DD, Berg DJ, Faraci FM. IL-10 deficiency increases superoxide and endothelial dysfunction during inflammation. Am J Physiol Heart Circ Physiol. 2000;279(4):H1555–62. https://doi.org/10.1152/ajpheart.2000.279.4.H1555.

    Article  CAS  PubMed  Google Scholar 

  80. Gunnett CA, Heistad DD, Faraci FM. Interleukin-10 protects nitric oxide-dependent relaxation during diabetes: role of superoxide. Diabetes. 2002;51(6):1931–7.

    Article  CAS  PubMed  Google Scholar 

  81. Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, et al. Role of Interleukin-10 in Acute Brain Injuries. Frontiers in neurology. 2017;8:244. https://doi.org/10.3389/fneur.2017.00244.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dammanahalli JK, Wang X, Sun Z. Genetic interleukin-10 deficiency causes vascular remodeling via the upregulation of Nox1. J Hypertens. 2011;29(11):2116–25. https://doi.org/10.1097/HJH.0b013e32834b22a0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sikka G, Miller KL, Steppan J, Pandey D, Jung SM, Fraser CD 3rd, et al. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age. Experimental gerontology. 2013;48(2):128–35. https://doi.org/10.1016/j.exger.2012.11.001.

    Article  CAS  PubMed  Google Scholar 

  84. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell. 1996;87(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  85. Zemse SM, Hilgers RH, Simkins GB, Rudic RD, Webb RC. Restoration of endothelin-1-induced impairment in endothelium-dependent relaxation by interleukin-10 in murine aortic rings. Canadian journal of physiology and pharmacology. 2008;86(8):557–65. https://doi.org/10.1139/y08-049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Giardina JB, Green GM, Cockrell KL, Granger JP, Khalil RA. TNF-alpha enhances contraction and inhibits endothelial NO-cGMP relaxation in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R130–43. https://doi.org/10.1152/ajpregu.00704.2001.

    Article  CAS  PubMed  Google Scholar 

  87. Davis JR, Giardina JB, Green GM, Alexander BT, Granger JP, Khalil RA. Reduced endothelial NO-cGMP vascular relaxation pathway during TNF-alpha-induced hypertension in pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2002;282(2):R390–9. https://doi.org/10.1152/ajpregu.00270.2001.

    Article  CAS  PubMed  Google Scholar 

  88. Didion SP, Kinzenbaw DA, Schrader LI, Chu Y, Faraci FM. Endogenous interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension. 2009;54(3):619–24. https://doi.org/10.1161/hypertensionaha.109.137158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Arriaga-Pizano L, Jimenez-Zamudio L, Vadillo-Ortega F, Martinez-Flores A, Herrerias-Canedo T, Hernandez-Guerrero C. The predominant Th1 cytokine profile in maternal plasma of preeclamptic women is not reflected in the choriodecidual and fetal compartments. J Soc Gynecol Investig. 2005;12(5):335–42. https://doi.org/10.1016/j.jsgi.2005.02.005.

    Article  CAS  PubMed  Google Scholar 

  90. Benian A, Madazli R, Aksu F, Uzun H, Aydin S. Plasma and placental levels of interleukin-10, transforming growth factor-beta1, and epithelial-cadherin in preeclampsia. Obstet Gynecol. 2002;100(2):327–31.

    CAS  PubMed  Google Scholar 

  91. Szarka A, Rigo J Jr, Lazar L, Beko G, Molvarec A. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 2010;11:59. https://doi.org/10.1186/1471-2172-11-59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharma A, Satyam A, Sharma JB. Leptin, IL-10 and inflammatory markers (TNF-alpha, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol. 2007;58(1):21–30. https://doi.org/10.1111/j.1600-0897.2007.00486.x.

    Article  CAS  PubMed  Google Scholar 

  93. Mosimann B, Wagner M, Poon LCY, Bansal AS, Nicolaides KH. Maternal serum cytokines at 30-33weeks in the prediction of preeclampsia. Prenatal Diagnosis. 2013;33(9):823–30. https://doi.org/10.1002/pd.4129.

    Article  CAS  PubMed  Google Scholar 

  94. Xu J, Gu Y, Sun J, Zhu H, Lewis DF, Wang Y. Reduced CD200 expression is associated with altered Th1/Th2 cytokine production in placental trophoblasts from preeclampsia. Am J Reprod Immunol. 2018;79(1). doi:https://doi.org/10.1111/aji.12763.

  95. Ozer DP, Dolgun ZN, Inan C, Sayin NC. The evaluation of placental apoptosis in severe preeclampsia with auto-antibodies and pro-inflammatory cytokines. Journal of the Turkish German Gynecology Association. 2016;17:S51.

    Article  Google Scholar 

  96. Darby MM, Wallace K, Cornelius D, Chatman KT, Mosely JN, Martin JN, et al. Vitamin D Supplementation Suppresses Hypoxia-Stimulated Placental Cytokine Secretion, Hypertension and CD4<sup>+</sup> T Cell Stimulation in Response to Placental Ischemia. Med J Obstet Gynecol. 2013;1(2):23.

    Google Scholar 

  97. Rein DT, Breidenbach M, Honscheid B, Friebe-Hoffmann U, Engel H, Gohring UJ, et al. Preeclamptic women are deficient of interleukin-10 as assessed by cytokine release of trophoblast cells in vitro. Cytokine. 2003;23(4-5):119–25.

    Article  CAS  PubMed  Google Scholar 

  98. Makris A, Xu B, Yu B, Thornton C, Hennessy A. Placental deficiency of interleukin-10 (IL-10) in preeclampsia and its relationship to an IL10 promoter polymorphism. Placenta. 2006;27(4-5):445–51. https://doi.org/10.1016/j.placenta.2005.05.003.

    Article  CAS  PubMed  Google Scholar 

  99. Fan DM, Wang Y, Liu XL, Zhang A, Xu Q. Polymorphisms in interleukin-6 and interleukin-10 may be associated with risk of preeclampsia. Genetics and Molecular Research. 2017;16(1):gmr16018588. https://doi.org/10.4238/gmr16018588.

    Article  CAS  Google Scholar 

  100. Zhou L, Cheng L, He Y, Gu Y, Wang Y, Wang C. Association of gene polymorphisms of FV, FII, MTHFR, SERPINE1, CTLA4, IL10, and TNFalpha with pre-eclampsia in Chinese women. Inflamm Res. 2016;65(9):717–24. https://doi.org/10.1007/s00011-016-0953-y.

    Article  CAS  PubMed  Google Scholar 

  101. Song L, Zhong M. Association between Interleukin-10 gene polymorphisms and risk of early-onset preeclampsia. Int J Clin Exp Pathol. 2015;8(9):11659–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu QY, Gao FY, Liu XR, Li J, Ji M, Dong J, et al. Investigations into the association between polymorphisms in the interleukin-10 gene and risk of early-onset preeclampsia. Genet Mol Res. 2015;14(4):19323–8. https://doi.org/10.4238/2015.December.29.42.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang G, Zhao J, Yi J, Luan Y, Wang Q. Association Between Gene Polymorphisms on Chromosome 1 and Susceptibility to Pre-Eclampsia: An Updated Meta-Analysis. Med Sci Monit. 2016;22:2202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee YH, Kim JH, Song GG. Meta-analysis of associations between interleukin-10 polymorphisms and susceptibility to pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2014;182:202–7. https://doi.org/10.1016/j.ejogrb.2014.09.030.

    Article  CAS  PubMed  Google Scholar 

  105. Dong X, Shi D. Simvastatin Alleviates Pathology in a Rat Model of Preeclampsia Involving ERK/MAPK Pathway. Reprod Sci. 2017;24(7):1053–61. https://doi.org/10.1177/1933719116678693.

    Article  CAS  PubMed  Google Scholar 

  106. Wang LL, Yu Y, Guan HB, Qiao C. Effect of Human Umbilical Cord Mesenchymal Stem Cell Transplantation in a Rat Model of Preeclampsia. Reprod Sci. 2016;23(8):1058–70. https://doi.org/10.1177/1933719116630417.

    Article  PubMed  CAS  Google Scholar 

  107. •• Chatterjee P, Chiasson VL, Seerangan G, Tobin RP, Kopriva SE, Newell-Rogers MK, et al. Cotreatment with interleukin 4 and interleukin 10 modulates immune cells and prevents hypertension in pregnant mice. Am J Hypertens. 2015;28(1):135–42. https://doi.org/10.1093/ajh/hpu100. This article evaluates treatment with recombinant IL-10 in a mouse model of preeclampsia.

    Article  CAS  PubMed  Google Scholar 

  108. Adela R, Borkar RM, Mishra N, Bhandi MM, Vishwakarma G, Varma BA, et al. Lower Serum Vitamin D Metabolite Levels in Relation to Circulating Cytokines/Chemokines and Metabolic Hormones in Pregnant Women with Hypertensive Disorders. Front. 2017;8:273. https://doi.org/10.3389/fimmu.2017.00273.

    Article  CAS  Google Scholar 

  109. Hao H, He M, Li J, Zhou Y, Dang J, Li F, et al. Upregulation of the Tim-3/Gal-9 pathway and correlation with the development of preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2015;194:85–91. https://doi.org/10.1016/j.ejogrb.2015.08.022.

    Article  CAS  PubMed  Google Scholar 

  110. Ozkan ZS, Deveci D, Akpolat N, Simsek M, Ilhan F, Yavuzkir S, et al. Are there any differences between the distribution of placental bed leukocyte subtypes of preeclamptic and healty pregnants? Journal of the Turkish German Gynecology Association. 2016;17:S169.

    Google Scholar 

  111. Tangeras LH, Austdal M, Skrastad RB, Salvesen KA, Austgulen R, Bathen TF, et al. Distinct First Trimester Cytokine Profiles for Gestational Hypertension and Preeclampsia. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(11):2478–85. https://doi.org/10.1161/ATVBAHA.115.305817.

    Article  CAS  PubMed  Google Scholar 

  112. Taylor BD, Tang G, Ness RB, Olsen J, Hougaard DM, Skogstrand K, et al. Mid-pregnancy circulating immune biomarkers in women with preeclampsia and normotensive controls. Pregnancy Hypertens. 2016;6(1):72–8. https://doi.org/10.1016/j.preghy.2015.11.002.

    Article  PubMed  Google Scholar 

  113. Taylor BD, Ness RB, Klebanoff MA, Zoh R, Bass D, Hougaard DM, et al. First and second trimester immune biomarkers in preeclamptic and normotensive women. Pregnancy Hypertens. 2016;6(4):388–93. https://doi.org/10.1016/j.preghy.2016.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yang SW, Cho EH, Choi SY, Lee YK, Park JH, Kim MK, et al. DC-SIGN expression in Hofbauer cells may play an important role in immune tolerance in fetal chorionic villi during the development of preeclampsia. J Reprod Immunol. 2017;124:30–7. https://doi.org/10.1016/j.jri.2017.09.012.

    Article  CAS  PubMed  Google Scholar 

  115. Peixoto AB, Araujo Junior E, Ribeiro JU, Rodrigues DB, Castro EC, Caldas TM, et al. Evaluation of inflammatory mediators in the deciduas of pregnant women with pre-eclampsia/eclampsia. J Matern Fetal Neonatal Med. 2016;29(1):75–9. https://doi.org/10.3109/14767058.2014.987117.

    Article  CAS  PubMed  Google Scholar 

  116. Vianna P, Mondadori AG, Bauer ME, Dornfeld D, Chies JA. HLA-G and CD8+ regulatory T cells in the inflammatory environment of pre-eclampsia. Reproduction. 2016;152(6):741–51. https://doi.org/10.1530/REP-15-0608.

    Article  CAS  PubMed  Google Scholar 

  117. Molvarec A, Szarka A, Walentin S, Beko G, Karadi I, Prohaszka Z, et al. Serum heat shock protein 70 levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in women with preeclampsia. Clin Chim Acta. 2011;412(21-22):1957–62. https://doi.org/10.1016/j.cca.2011.06.042.

    Article  CAS  PubMed  Google Scholar 

  118. Ribeiro VR, Romao-Veiga M, Romagnoli GG, Matias ML, Nunes PR, Borges VTM, et al. Association between cytokine profile and transcription factors produced by T-cell subsets in early- and late-onset pre-eclampsia. Immunology. 2017;152(1):163–73. https://doi.org/10.1111/imm.12757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mansouri R, Akbari F, Vodjgani M, Mahboudi F, Kalantar F, Mirahmadian M. Serum cytokines profiles in Iranian patients with preeclampsia. Iran J Immunol. 2007;4(3):179-85. doi:https://dx.doi.org/IJIv4i3A7.

  120. Cristofalo R, Bannwart-Castro CF, Magalhaes CG, Borges VT, Peracoli JC, Witkin SS, et al. Silibinin attenuates oxidative metabolism and cytokine production by monocytes from preeclamptic women. Free Radic Res. 2013;47(4):268–75. https://doi.org/10.3109/10715762.2013.765951.

    Article  CAS  PubMed  Google Scholar 

  121. •• Shi DD, Wang Y, Guo JJ, Zhou L, Wang N. Vitamin D Enhances Efficacy of Oral Nifedipine in Treating Preeclampsia with Severe Features: A Double Blinded, Placebo-Controlled and Randomized Clinical Trial. Front Pharmacol. 2017;8:865. https://doi.org/10.3389/fphar.2017.00865. This article is a randomized controlled study of the beneficial effects of D vitamin supplementation on the cytokine profile and IL-10 in preeclamptic patients.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kemse NG, Kale AA, Joshi SR. Supplementation of maternal omega-3 fatty acids to pregnancy induced hypertension Wistar rats improves IL10 and VEGF levels. Prostaglandins Leukot Essent Fatty Acids. 2016;104:25–32. https://doi.org/10.1016/j.plefa.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna D. Garovic.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cubro, H., Kashyap, S., Nath, M.C. et al. The Role of Interleukin-10 in the Pathophysiology of Preeclampsia. Curr Hypertens Rep 20, 36 (2018). https://doi.org/10.1007/s11906-018-0833-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0833-7

Keywords

Navigation