Skip to main content

Advertisement

Log in

Clinical trials and clinical practice in multiple sclerosis: Conventional and emerging magnetic resonance imaging technologies

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Conventional magnetic resonance imaging (cMRI) is widely used for diagnosing multiple sclerosis (MS) and as a paraclinical tool to monitor disease activity and evolution in natural history studies and clinical trials. However, the correlation between cMRI and clinical findings is far from strict, and such a discrepancy is even more evident when moving from the setting of large-scale studies to the management of individual patients. Among the reasons for this "clinical-MRI paradox" is the limited specificity of cMRI to the heterogeneous pathologic substrates of MS and its inability to quantify the extent of damage in the normal-appearing tissues. Modern quantitative MR techniques have the potential to overcome some of the limitations of cMRI. Although the application of modern MR techniques is changing dramatically our understanding of how MS causes irreversible disability, their use for clinical trial monitoring and clinical practice is still very limited. Whereas there is increasing perception that modern quantitative MR techniques should be more extensively employed in clinical trials to advance the understanding of MS and derive innovative information, their use in clinical practice should still be regarded as premature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Rovaris M, Filippi M: Magnetic resonance techniques to monitor disease evolution and treatment trial outcomes in multiple sclerosis. Curr Opin Neurol 1999, 12:337–344.

    Article  PubMed  CAS  Google Scholar 

  2. Filippi M, Horsfield MA, Ader HJ, et al.: Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 1998, 43:499–506.

    Article  PubMed  CAS  Google Scholar 

  3. Losseff NA, Wang L, Lai HM, et al.: Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 1996, 119:2009–2019.

    Article  PubMed  Google Scholar 

  4. Losseff NA, Webb SL, O’Riordan JI, et al.: Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 1996, 119:701–708.

    Article  PubMed  Google Scholar 

  5. Rudick RA, Fisher E, Lee JC, SimonJ, Jacobs L, and the Multiple Sclerosis Collaborative Research Group: Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Neurology 1999, 53:1698–1704.

    PubMed  CAS  Google Scholar 

  6. Kappos L, Moeri D, Radue EW, et al.: Predictive value of gadolinium-enhanced MRI for relapse rate and changes in disability or impairment in multiple sclerosis: a metaanalysis. Lancet 1999, 353:964–969.

    Article  PubMed  CAS  Google Scholar 

  7. Molyneux PD, Filippi M, Barkhof F, et al.: Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol 1998, 43:332–339.

    Article  PubMed  CAS  Google Scholar 

  8. Molyneux PD, Barker GJ, Barkhof F, et al.: Clinical-MRI correlations in a European trial of interferon beta-1b in secondary progressive MS. Neurology 2001, 57:2191–2197.

    PubMed  CAS  Google Scholar 

  9. Filippi M, Grossman RI, Comi G: Magnetization transfer in multiple sclerosis. Neurology 1999, 53(suppl 3).

  10. Filippi M, Inglese M: Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis. J Neurol Sci 2001, 186(suppl 1):S37-S43.

    Article  PubMed  Google Scholar 

  11. Filippi M, Arnold DL, Comi G: Magnetic resonance spectroscopy in multiple sclerosis. Milan: Springer-Verlag; 2001.

    Google Scholar 

  12. McDonald WI, Compston A, Edan G, et al.: Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 2001, 50:121–127. Revised diagnostic criteria for multiple sclerosis focused on the paraclinical demonstration of dissemination of the disease in space and time through the integration of conventional magnetic resonance imaging with clinical and other diagnostic methods.

    Article  PubMed  CAS  Google Scholar 

  13. McDonald WI, Miller DH, Barnes D: The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 1992, 18:319–334.

    PubMed  CAS  Google Scholar 

  14. van WalderveenMA, Kamphorst W, Scheltens P, et al.: Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998, 50:1282–1288.

    PubMed  Google Scholar 

  15. Filippi M, Grossman RI: MRI techniques to monitor MS evolution: the present and the future. Neurology 2002, in press.

  16. Filippi M, Wolinsky JS, Sormani MP, Comi G, and the European/ Canadian Glatiramer Acetate Study Group: Enhancement frequency decreases with increasing age in relapsingremitting multiple sclerosis. Neurology 2001, 56:422–423.

    PubMed  CAS  Google Scholar 

  17. Filippi M, Rossi P, Campi A, et al.: Serial contrast-enhanced MR in patients with multiple sclerosis and varying levels of disability. Am J Neuroradiol 1997, 18:1549–1556.

    PubMed  CAS  Google Scholar 

  18. Stevenson VL, Miller DH, Leary SM, et al.: One year follow up study of primary and transitional progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2000, 68:713–718.

    Article  PubMed  CAS  Google Scholar 

  19. Filippi M, Rovaris M, Capra R, et al.: A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis. Implications for phase II clinical trials. Brain 1998, 121:2011–2020.

    Article  PubMed  Google Scholar 

  20. Filippi M, Rocca MA, Rizzo G, et al.: Magnetization transfer ratios in multiple sclerosis lesions enhancing after different doses of gadolinium. Neurology 1998, 50:1289–1293.

    PubMed  CAS  Google Scholar 

  21. Filippi M, Rovaris M, Capra R, et al.: Interferon beta treatment for multiple sclerosis has a graduated effect on MRI enhancing lesions according to their size and pathology. J Neurol Neurosurg Psychiatry 1999, 67:386–389.

    PubMed  CAS  Google Scholar 

  22. Filippi M, Horsfield MA, Morrissey SP, et al.: Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 1994, 44:635–641.

    PubMed  CAS  Google Scholar 

  23. Brex PA, Miszkiel KA, O’Riordan JI, et al.: Assessing the risk of early multiple sclerosis in patients with clinically isolated syndromes: the role of a follow up MRI. J Neurol Neurosurg Psychiatry 2001, 70:390–393.

    Article  PubMed  CAS  Google Scholar 

  24. O’Riordan JI, Thompson AJ, Kingsley DP, et al.: The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain 1998, 121:495–503.

    Article  PubMed  Google Scholar 

  25. Rovaris M, Bozzali M, Santuccio G, et al.: In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 2001, 124:2540–2549. Diffuse tissue damage, undetectable by conventional magnetic resonance imaging (cMRI), is shown by magnetization transfer-MRI in the brain and cord of primary progressive multiple sclerosis (MS) patients. The extent of tissue damage in these patients is comparable to that of secondary progressive MS patients with similar levels of disability, but many more cMRI lesions.

    Article  PubMed  CAS  Google Scholar 

  26. Rovaris M, Comi G, Rocca MA, et al.: Relevance of hypointense lesions on fast fluid-attenuated inversion recovery MR images as a marker of disease severity in cases of multiple sclerosis. Am J Neuroradiol 1999, 20:813–820.

    PubMed  CAS  Google Scholar 

  27. Rocca MA, Mastronardo G, Horsfield MA, et al.: Comparison of three MR sequences for the detection of cervical cord lesions in multiple sclerosis. Am J Neuroradiol 1999, 20:1710–1716.

    PubMed  CAS  Google Scholar 

  28. Thorpe JW, Kidd D, Moseley IF, et al.: Spinal MRI in patients with suspected multiple sclerosis and negative brain MRI. Brain 1996, 119:709–714.

    Article  PubMed  Google Scholar 

  29. Brex PA, Leary SM, O’Riordan JI, et al.: Measurement of spinal cord area in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Neurosurg Psychiatry 2001, 70:544–547.

    Article  PubMed  CAS  Google Scholar 

  30. Filippi M, Rovaris M, Iannucci G, et al.: Whole brain volume changes in patients with progressive MS treated with cladribine. Neurology 2000, 55:1714–1718.

    PubMed  CAS  Google Scholar 

  31. Simon JH, Jacobs LD, Campion M, et al.: Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. Ann Neurol 1998, 43:79–87.

    Article  PubMed  CAS  Google Scholar 

  32. The PRISMS Study Group and the University of British Columbia MS/MRI Analysis Group: PRISMS-4: long-term efficacy of interferon-beta-1a in relapsing MS. Neurology 2001, 56:1628–1636.

    Google Scholar 

  33. Comi G, Filippi M, Wolinsky JS and the European/Canadian Glatiramer Acetate Study Group: European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol 2001, 49:290–297.

    Article  PubMed  CAS  Google Scholar 

  34. Sorensen PS, Wanscher B, Jensen CV, et al.: Intravenous immunoglobulin G reduces MRI activity in relapsing multiple sclerosis. Neurology 1998, 50:1273–1281.

    PubMed  CAS  Google Scholar 

  35. Miller DH, Molyneux PD, Barker GJ, et al.: Effect of interferon-beta1b on magnetic resonance imaging outcomes in secondary progressive multiple sclerosis: results of a European multicenter, randomized, double-blind, placebo-controlled trial. Ann Neurol 1999, 46:850–859.

    Article  PubMed  CAS  Google Scholar 

  36. Rice GP, Filippi M, Comi G, and the Cladribine MRI Study Group: Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Neurology 2000, 54:1145–1155.

    PubMed  CAS  Google Scholar 

  37. Paolillo A, Coles AJ, Molyneux PD, et al.: Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology 1999, 53:751–757.

    PubMed  CAS  Google Scholar 

  38. Comi G, Filippi M, Barkhof F, et al.: Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 2001, 357:1576–1582. This placebo-controlled study showed that weekly treatment with 22 μg of interferon β-1a given subcutaneously has a significant positive effect on clinical and conventional magnetic resonance imaging outcomes over a 2-year follow-up period in patients at presentation with a clinical picture suggestive of multiple sclerosis.

    Article  PubMed  CAS  Google Scholar 

  39. Jacobs LD, Beck RW, Simon JH, et al.: Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. N Engl J Med 2000, 343:898–904. Initiating treatment with intramuscular interferon β-1a at a dosage of 30 μg weekly at the time of a first demyelinating event is beneficial for patients with brain lesions on magnetic resonance imaging that indicate a high risk of clinically definite multiple sclerosis.

    Article  PubMed  CAS  Google Scholar 

  40. Simon JH, Lull J, Jacobs LD, et al.: A longitudinal study of T1 hypointense lesions in relapsing MS: MSCRG trial of interferon beta-1a. Neurology 2000, 55:185–192.

    PubMed  CAS  Google Scholar 

  41. Barkhof F, van Waesberghe JH, Filippi M, et al.: T1 hypointense lesions in secondary progressive multiple sclerosis: effect of interferon beta-1b treatment. Brain 2001, 124:1396–1402.

    Article  PubMed  CAS  Google Scholar 

  42. Filippi M, Rovaris M, Rice GP, et al.: The effect of cladribine on T1 ‘black hole’ changes in progressive MS. J Neurol Sci 2000, 176:42–44.

    Article  PubMed  CAS  Google Scholar 

  43. Rovaris M, Comi G, Rocca MA, Wolinsky JS, Filippi M, and the European/Canadian Glatiramer Acetate Study Group: Short-term brain volume change in relapsing-remitting multiple sclerosis: effect of glatiramer acetate and implications. Brain 2001, 124:1803–1812.

    Article  PubMed  CAS  Google Scholar 

  44. Molyneux PD, Kappos L, Polman C, et al.: The effect of interferon beta-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. Brain 2000, 123:2256–2263.

    Article  PubMed  Google Scholar 

  45. Filippi M, Rovaris M, Rocca MA, et al.: Glatiramer acetate reduces the proportion of new MS lesions evolving into "black holes". Neurology 2001, 57:731–733.

    PubMed  CAS  Google Scholar 

  46. Brex PA, Molyneux PD, Smiddy P, et al.: The effect of IFNb-1b on the evolution of enhancing lesions in secondary progressive MS. Neurology 2001, 57:2185–2190.

    PubMed  CAS  Google Scholar 

  47. Fazekas F, Barkhof F, Filippi M, et al.: The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology 1999, 53:448–456. The typical appearance and pattern of multiple sclerosis (MS) lesions are reviewed and detailed differential diagnostic considerations are made. Standardized magnetic resonance imaging (MRI) examination protocols for the brain and cord are proposed, for both MS diagnosis and disease monitoring, with the aim to optimize the use of conventional MRI in the clinical work-up of MS patients.

    PubMed  CAS  Google Scholar 

  48. van WaesbergheJH, Kamphorst W, De GrootC, et al.: Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 1999, 46:747–754. This postmortem study demonstrates a strong correlation between axonal density and magnetization transfer ratio (MTR) in multiple sclerosis lesions and normal-appearing white matter, emphasizing the role of MTR in monitoring irreversible tissue damage.

    Article  PubMed  Google Scholar 

  49. van BuchemMA, McGowan JC, Kolson DL, Polansky M, Grossman RI: Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 1996, 36:632–636.

    Article  PubMed  Google Scholar 

  50. Filippi M: In-vivo tissue characterization of multiple sclerosis and other white matter diseases using magnetic resonance based techniques. J Neurol 2001, 248:1019–1029.

    Article  PubMed  CAS  Google Scholar 

  51. Rocca MA, Mastronardo G, Rodegher M, Comi G, Filippi M: Long term changes of MT-derived measures from patients with relapsing-remitting and secondary-progressive multiple sclerosis. Am J Neuroadiol 1999, 20:821–827.

    CAS  Google Scholar 

  52. Filippi M, Campi A, Dousset V, et al.: A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 1995, 45:478–482.

    PubMed  CAS  Google Scholar 

  53. van WaesbergheJH, van WalderveenMA, Castelijns JA, et al.: Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization MR. Am J Neuroradiol 1998, 19:675–683.

    PubMed  Google Scholar 

  54. Iannucci G, Tortorella C, Rovaris M, et al.: Prognostic value of MR and MTI findings at presentation in patients with clinically isolated syndromes suggestive of MS. Am J Neuroradiol 2000, 21:1034–1038.

    PubMed  CAS  Google Scholar 

  55. Filippi M, Iannucci G, Tortorella C, et al.: Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 1999, 52:588–594.

    PubMed  CAS  Google Scholar 

  56. Filippi M, Inglese M, Rovaris M, et al.: Magnetization transfer imaging to monitor the evolution of MS: a one-year follow up study. Neurology 2000, 55:940–946.

    PubMed  CAS  Google Scholar 

  57. Tortorella C, Viti B, Bozzali M, et al.: A magnetization transfer histogram study of normal appearing brain tissue in multiple sclerosis. Neurology 2000, 54:186–193.

    Article  PubMed  CAS  Google Scholar 

  58. Filippi M, Rocca MA, Minicucci L, et al.: Magnetization transfer imaging of patients with definite MS and negative conventional MRI. Neurology 1999, 52:845–848.

    PubMed  CAS  Google Scholar 

  59. Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G: Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 1998, 43:809–814.

    Article  PubMed  CAS  Google Scholar 

  60. Kaiser JS, Grossman RI, Polansky M, et al.: Magnetization transfer histogram analysis of monosymptomatic episodes of neurologic dysfunction: preliminary findings. Am J Neuroradiol 2000, 21:1043–1047.

    PubMed  CAS  Google Scholar 

  61. Brex PA, Leary SM, Plant GT, Thompson AJ, Miller DH: Magnetization transfer imaging in patients with clinically isolated syndromes suggestive of multiple sclerosis. Am J Neuroradiol 2001, 22:947–951.

    PubMed  CAS  Google Scholar 

  62. Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M: Magnetization transfer ratio and mean diffusivity of normalappearing white and gray matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2001, 70:311–317.

    Article  PubMed  CAS  Google Scholar 

  63. Ge Y, Grossman RI, Udupa JK, et al.: Magnetization transfer ratio histogram analysis of gray matter in relapsing-remitting multiple sclerosis. Am J Neuroradiol 2001, 22:470–475.

    PubMed  CAS  Google Scholar 

  64. Iannucci G, Minicucci L, Rodegher ME, et al.: Correlations between clinical and MRI involvement in multiple sclerosis: assessment using T1, T2 and MT histograms. J Neurol Sci 1999, 171:121–129.

    Article  PubMed  CAS  Google Scholar 

  65. Kalkers NF, Hintzen RQ, van WaesbergheJH, et al.: Magnetization transfer histogram parameters reflect all dimensions of MS pathology, including atrophy. J Neurol Sci 2001, 184:155–162.

    Article  PubMed  CAS  Google Scholar 

  66. Rovaris M, Filippi M, Falautano M, et al.: Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 1998, 50:1601–1608.

    PubMed  CAS  Google Scholar 

  67. Filippi M, Tortorella C, Rovaris M, et al.: Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 2000, 68:157–161.

    Article  PubMed  CAS  Google Scholar 

  68. Filippi M, Bozzali M, Horsfield MA, et al.: A conventional and magnetization transfer MRI study of the cervical cord in patients with multiple sclerosis. Neurology 2000, 54:207–213.

    PubMed  CAS  Google Scholar 

  69. Rovaris M, Bozzali M, Santuccio G, et al.: Relative contributions of brain and cervical cord pathology to MS disability: a study with MTR histogram analysis. J Neurol Neurosurg Psychiatry 2000, 69:723–727.

    Article  PubMed  CAS  Google Scholar 

  70. Inglese M, Ghezzi A, Bianchi S, et al.: MS irreversible disability and tissue loss: a conventional and MT-MRI study of the optic nerves. Arch Neurol 2002, 59:250–255.

    Article  PubMed  Google Scholar 

  71. Filippi M, Dousset V, McFarland HF, Miller DH, Grossman RI: The role of MRI in the diagnosis and monitoring of multiple sclerosis. Consensus report of the "White Matter Study Group" of the International Society for Magnetic Resonance in Medicine. J Magn Reson Imag 2002, in press.

  72. Richert ND, Ostuni JL, Bash CN, et al.: Serial whole-brain magnetization transfer imaging in patients with relapsingremitting multiple sclerosis at baseline and during treatment with interferon beta-1b. Am J Neuroradiol 1998, 19:1705–1713.

    PubMed  CAS  Google Scholar 

  73. Richert ND, Ostuni JL, Bash CN, et al.: Interferon beta-1b and intravenous methylprednisolone promote lesion recovery in multiple sclerosis. Mult Scler 2001, 7:49–58.

    PubMed  CAS  Google Scholar 

  74. Kita M, Goodkin DE, Bacchetti P, et al.: Magnetization transfer ratio in new MS lesions before and during therapy with IFNb-1a. Neurology 2000, 54:1741–1745.

    PubMed  CAS  Google Scholar 

  75. Rovaris M, Viti B, Ciboddo C, et al.: Brain involvement in systemic immune-mediated diseases: a magnetic resonance and magnetization transfer imaging study. J Neurol Neurosurg Psychiatry 2000, 68:170–177.

    Article  PubMed  CAS  Google Scholar 

  76. Rovaris M, Holtmannspötter M, Rocca MA, et al.: Contribution of cervical cord MRI and brain magnetization transfer imaging to the assessment of individual patients with multiple sclerosis: a preliminary study. Mult Scler 2002, 8:52–58.

    Article  PubMed  CAS  Google Scholar 

  77. Cercignani M, Iannucci G, Rocca MA, et al.: Pathological damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 2000, 54:1139–1144.

    PubMed  CAS  Google Scholar 

  78. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G: Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001, 56:304–311. Diffusion tensor (DT)-magnetic resonance imaging (MRI) is able to identify multiple sclerosis lesions with severe tissue damage and to detect changes in the normal appearing white matter. DT-MRI-derived measures are correlated with clinical disability, especially in patients with secondary progressive multiple sclerosis.

    PubMed  CAS  Google Scholar 

  79. Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH: Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 1999, 52:1626–1632.

    PubMed  CAS  Google Scholar 

  80. Cercignani M, Inglese M, Pagani E, Comi G, Filippi M: Mean diffusivity and fractional anisotropy histograms in patients with multiple sclerosis. Am J Neuroradiol 2001, 22:952–958.

    PubMed  CAS  Google Scholar 

  81. Werring DJ, Brassat D, Droogan AG, et al.: The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MR study. Brain 2000, 123:1667–1676. This study confirms that new focal lesions associated with bloodbrain barrier leakage are preceded by subtle, progressive alterations in tissue integrity beyond the resolution of conventional magnetic resonance imaging. It also supports the concept that structural damage in lesions causes damage or dysfunction in connected areas of normal-appearing white matter.

    Article  PubMed  Google Scholar 

  82. Rocca MA, Cercignani M, Iannucci G, Comi G, Filippi M: Weekly diffusion-weighted imaging study of NAWM in MS. Neurology 2000, 55:882–884.

    PubMed  CAS  Google Scholar 

  83. Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M: Quantification of brain gray matter damage in different MS phenotypes using diffusion tensor imaging. Am J Neuroradiol 2002, in press.

  84. Rovaris M, Iannucci G, Falautano M, et al.: Cognitive dysfunction in patients with mildly-disabling relapsingremitting MS: an exploratory study with diffusion tensor MR imaging. J Neurol Sci 2002, in press.

  85. Helenius J, Soinne L, Salonen O, Kaste M, Tatlisumak T: Leukoaraiosis, ischemic stroke, and normal white matter on diffusion-weighted MRI. Stroke 2002, 33:45–50.

    Article  PubMed  Google Scholar 

  86. Inglese M, Salvi F, Iannucci G, et al.: Magnetization transfer and diffusion tensor MR imaging of acute disseminated encephalomyelitis. Am J Neuroradiol 2002, 23:267–272.

    PubMed  Google Scholar 

  87. van WalderveenMA, Barkhof F, Pouwels PJ, et al.: Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol 1999, 46:79–87.

    Article  PubMed  Google Scholar 

  88. Sarchielli P, Presciutti O, Pelliccioli GP, et al.: Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 1999, 122:513–521.

    Article  PubMed  Google Scholar 

  89. Narayana PA, Doyle TJ, Lai D, Wolinsky JS: Serial proton magnetic resonance spectroscopic imaging, contrastenhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 1998, 43:56–71.

    Article  PubMed  CAS  Google Scholar 

  90. De Stefano N, Narayanan S, Matthews PM, et al.: In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 1999, 122:1933–1939.

    Article  PubMed  Google Scholar 

  91. De Stefano N, Matthews PM, Fu L, et al.: Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 1998, 121:1469–1477.

    Article  PubMed  Google Scholar 

  92. Lee MA, Blamire AM, Pendlebury S, et al.: Axonal injury or loss in the internal capsule and motor impairment in multiple sclerosis. Arch Neurol 2000, 57:65–70.

    Article  PubMed  CAS  Google Scholar 

  93. Pan JW, Krupp LB, Elkins LE, Coyle PK: Cognitive dysfunction lateralizes with NAA in multiple sclerosis. Appl Neuropsychol 2001, 8:155–160.

    Article  PubMed  CAS  Google Scholar 

  94. De Stefano N, Narayanan S, Francis GS, et al.: Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001, 58:65–70. This study shows a reduction of N-acetyl-aspartate/creatine values in the early stages of multiple sclerosis, even before significant disability is clinically evident, underpinning that axonal damage begins and contributes to disability from the earliest stages of the disease.

    Article  PubMed  Google Scholar 

  95. Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD: Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 2000, 48:893–901.

    Article  PubMed  CAS  Google Scholar 

  96. Sarchielli P, Presciutti O, Tarducci R, et al.: 1H-MRS in patients with multiple sclerosis undergoing treatment with interferon beta-1a: results of a preliminary study. J Neurol Neurosurg Psychiatry 1998, 64:204–212.

    Article  PubMed  CAS  Google Scholar 

  97. Narayanan S, De Stefano N, Francis GS, et al.: Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 2001, 248:979–986.

    Article  PubMed  CAS  Google Scholar 

  98. Dousset V, Delalande C, Ballarino L, et al.: In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 1999, 41:329–333.

    Article  PubMed  CAS  Google Scholar 

  99. Reddy H, Narayanan S, Arnoutelis R, et al.: Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 2000, 123:2314–2320.

    Article  PubMed  Google Scholar 

  100. RoccaMA, Falini A, Colombo B, et al.: Adaptive functional changes in the cerebral cortex of patients with nondisabling MS correlate with the extent of brain structural damage. Ann Neurol 2002, 51:330–339. This study shows that cortical activation occurs over a rather distributed sensory-motor network in nondisabled relapsing-remitting multiple sclerosis patients. It also suggests that increased recruitment of this cortical network might contribute to limit the functional impact of white matter multiple sclerosis injury.

    Article  PubMed  Google Scholar 

  101. Filippi M, Rocca MA, Falini A, et al.: Correlations between structural CNS damage and functional MRI changes in primary progressive MS. NeuroImage 2002, 15:537–546.

    Article  PubMed  CAS  Google Scholar 

  102. Mainero C, De Stefano N, Iannucci G, et al.: Correlates of MS disability assessed in-vivo using aggregates of MR quantities. Neurology 2001, 56:1331–1334.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippi, M., Rocca, M.A. & Rovaris, M. Clinical trials and clinical practice in multiple sclerosis: Conventional and emerging magnetic resonance imaging technologies. Curr Neurol Neurosci Rep 2, 267–276 (2002). https://doi.org/10.1007/s11910-002-0086-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-002-0086-2

Keywords

Navigation