Skip to main content
Log in

ALS: Recent Developments from Genetics Studies

  • Genetics (V Bonifati, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal disorder that is characterized by a progressive degeneration of the upper and lower motor neurons. Most cases appear to be sporadic, but 5–10 % of cases have a family history of the disease. High-throughput DNA sequencing and related genomic capture tools are methodological advances which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic ALS. It is interesting to note that as the number of ALS genes grows, many of the proteins they encode are in shared intracellular processes. This review will summarize some of the recent advances and gene discovery made in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interests, published recently, have been highlighted as: •Of importance

  1. Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 2013;14:248–64.

    Article  CAS  PubMed  Google Scholar 

  2. Lattante S, Ciura S, Rouleau GA, Kabashi E. Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet. 2015;31:263–73.

    Article  CAS  PubMed  Google Scholar 

  3. Ittner LM, Halliday GM, Kril JJ, Götz J, Hodges JR, Kiernan MC. FTD and ALS--translating mouse studies into clinical trials. Nat Rev Neurol. 2015;11:360–6.

    Article  PubMed  Google Scholar 

  4. Al-Chalabi A, Visscher PM. Motor neuron disease: common genetic variants and the heritability of ALS. Nat Rev Neurol. 2014;10:549–50.

    Article  CAS  PubMed  Google Scholar 

  5. Guerreiro R, Brás J, Hardy J. SnapShot: Genetics of ALS and FTD. Cell. 2015;160:798–798.e1.

  6. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.

    Article  CAS  PubMed  Google Scholar 

  7. Bowling AC, Schulz JB, Brown RH, Beal MF. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem. 1993;61:2322–5.

    Article  CAS  PubMed  Google Scholar 

  8. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.

    Article  CAS  PubMed  Google Scholar 

  9. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40:572–4.

    Article  CAS  PubMed  Google Scholar 

  10. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319:1668–72.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, den Berg LH. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol. 2012;124:339–52.

    Article  CAS  PubMed  Google Scholar 

  12. Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17:17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pickles S, Vande Velde C. Misfolded SOD1 and ALS: zeroing in on mitochondria. Amyotroph Lateral Scler. 2012;13:333–40.

    Article  CAS  PubMed  Google Scholar 

  14. Tafuri F, Ronchi D, Magri F, Comi GP, Corti S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci. 2015;9:336.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet. 2010;19:R46–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323:1208–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwiatkowski TJ, Bosco DA, LeClerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323:1205–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fontana F, Siva K, Denti MA. A network of RNA and protein interactions in Fronto Temporal Dementia. Front Mol Neurosci. 2015;8:9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ling S-C, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79:416–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim HJ, Kim NC, Wang Y-D, Scarborough EA, Moore J, Diaz Z, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495:467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Y-Z, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet. 2004;74:1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turner MR, Hardiman O, Benatar M, Brooks BR, Chiò A, de Carvalho M, et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol. 2013;12:310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schipper LJ, Raaphorst J, Aronica E, Baas F, de Haan R, de Visser M, et al. Prevalence of brain and spinal cord inclusions, including dipeptide repeat proteins, in patients with the C9ORF72 hexanucleotide repeat expansion: a systematic neuropathological review. Neuropathol Appl Neurobiol. 2015. doi:10.1111/nan.12284.

  24. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, et al. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell. 2015;162:1066–77. Patel et al. reported how the prion domain of FUS forms liquid droplets that initiate aggregates formation and how mutant FUS protein could accelerate this process.

    Article  CAS  PubMed  Google Scholar 

  25. Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell. 2012;149:753–67.

    Article  CAS  PubMed  Google Scholar 

  26. Majcher V, Goode A, James V, Layfield R. Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci. 2015;66:43–52.

    Article  CAS  PubMed  Google Scholar 

  27. Rohrer JD, Isaacs AM, Mizielinska S, Mead S, Lashley T, Wray S, et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 2015;14:291–301.

    Article  CAS  PubMed  Google Scholar 

  28. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron. 2011;72:245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron. 2011;72:257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gómez-Tortosa E, Gallego J, Guerrero-López R, Marcos A, Gil-Neciga E, Sainz MJ, et al. C9ORF72 hexanucleotide expansions of 20-22 repeats are associated with frontotemporal deterioration. Neurology. 2013;80:366–70. Gómez-Tortosa et al. were the first to suggest that intermediate repeat of GGGGCC in C9ORF72 could also be pathogenic.

    Article  PubMed  Google Scholar 

  31. Byrne S, Heverin M, Elamin M, Walsh C, Hardiman O. Intermediate repeat expansion length in C9orf72 may be pathological in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15:148–50.

    Article  CAS  PubMed  Google Scholar 

  32. Cooper-Knock J, Higginbottom A, Connor-Robson N, Bayatti N, Bury JJ, Kirby J, et al. C9ORF72 transcription in a frontotemporal dementia case with two expanded alleles. Neurology. 2013;81:1719–21.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fratta P, Poulter M, Lashley T, Rohrer JD, Polke JM, Beck J, et al. Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol. 2013;126:401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. La Spada AR, Paulson HL, Fischbeck KH. Trinucleotide repeat expansion in neurological disease. Ann Neurol. 1994;36:814–22.

    Article  PubMed  Google Scholar 

  35. Akimoto C, Volk AE, van Blitterswijk M, Van den Broeck M, Leblond CS, Lumbroso S, et al. A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories. J Med Genet. 2014;51:419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dols-Icardo O, García-Redondo A, Rojas-García R, Sanchez-Valle R, Noguera A, Gómez-Tortosa E, et al. Characterization of the repeat expansion size in C9orf72 in amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2014;23:749–54.

    Article  CAS  PubMed  Google Scholar 

  37. van Blitterswijk M, DeJesus-Hernandez M, Niemantsverdriet E, Murray ME, Heckman MG, Diehl NN, et al. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions: a cross-sectional cohort study. Lancet Neurol. 2013;12:978–88.

    Article  PubMed  Google Scholar 

  38. Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 2012;11:54–65.

    Article  CAS  PubMed  Google Scholar 

  39. Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126:895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suzuki N, Maroof AM, Merkle FT, Koszka K, Intoh A, Armstrong I, et al. The mouse C9ORF72 ortholog is enriched in neurons known to degenerate in ALS and FTD. Nat Neurosci. 2013;16:1725–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao S, MacNair L, McGoldrick P, McKeever PM, McLean JR, Zhang M, et al. Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann Neurol. 2015;78:568–83.

    Article  CAS  PubMed  Google Scholar 

  42. Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics. 2013;29:499–503. Levine et al. reported a prospective in silico study to propose what could be a cellular function of the product encoded by C9ORF72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang D, Iyer LM, He F, Aravind L. Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front Genet. 2012;3:283.

    PubMed  PubMed Central  Google Scholar 

  44. Chaineau M, Ioannou MS, McPherson PS. Rab35: GEFs, GAPs and effectors. Traffic. 2013;14:1109–17.

    CAS  PubMed  Google Scholar 

  45. Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RAK, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23:3579–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ivanov P, O'Day E, Emara MM, Wagner G, Lieberman J, Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci. 2014;111:18201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rossi S, Serrano A, Gerbino V, Giorgi A, Di Francesco L, Nencini M, et al. Nuclear accumulation of mRNAs underlies G4C2-repeat-induced translational repression in a cellular model of C9orf72 ALS. J Cell Sci. 2015;128:1787–99.

    Article  CAS  PubMed  Google Scholar 

  48. Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee K-H, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015;525:129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jovičić A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci. 2015;18:1226–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525:56–61. References 48-50 describe the use of various model organisms and patient material to establish nucleoplasmic shuttling impairments when C9ORF72 mRNAs contain expanded GGGGCC repeat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaneb HM, Folkmann AW, Belzil VV, Jao L-E, Leblond CS, Girard SL, et al. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Hum Mol Genet. 2015;24:1363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 2014;137:2329–45. Bannwarth et al were the first to link CHCHD10 with ALS and FTD. Many mutations in patients were identified and mitochondrial abnormalities were confirmed in patient cells.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chaussenot A, Le Ber I, Ait-El-Mkadem S, Camuzat A, de Septenville A, Bannwarth S, et al. Screening of CHCHD10 in a French cohort confirms the involvement of this gene in frontotemporal dementia with amyotrophic lateral sclerosis patients. Neurobiol Aging. 2014;35:2884.e1–4.

  54. Chiò A, Mora G, Sabatelli M, Caponnetto C, Traynor BJ, Johnson JO, et al. CHCH10 mutations in an Italian cohort of familial and sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging. 2015;1767(36):e3–6.

    Google Scholar 

  55. Johnson JO, Glynn SM, Gibbs JR, Nalls MA, Sabatelli M, Restagno G, et al. Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain. 2014;137:e311–1.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dols-Icardo O, Nebot I, Gorostidi A, Ortega-Cubero S, Hernández I, Rojas-García R, et al. Analysis of the CHCHD10 gene in patients with frontotemporal dementia and amyotrophic lateral sclerosis from Spain. Brain. 2015;138:e400.

    Article  PubMed  Google Scholar 

  57. Pasanen P, Myllykangas L, Pöyhönen M, Kiuru-Enari S, Tienari PJ, Laaksovirta H, et al. Intrafamilial clinical variability in individuals carrying the CHCHD10 mutation Gly66Val. Acta Neurol Scand. 2016;133(5):361–6.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang M, Xi Z, Zinman L, Bruni AC, Maletta RG, Curcio SAM, et al. Mutation analysis of CHCHD10 in different neurodegenerative diseases. Brain. 2015;138:e380.

    Article  PubMed  Google Scholar 

  59. Müller K, Andersen PM, Hübers A, Marroquin N, Volk AE, Danzer KM, et al. Two novel mutations in conserved codons indicate that CHCHD10 is a gene associated with motor neuron disease. Brain. 2014;137:e309–9.

    Article  PubMed  Google Scholar 

  60. Marroquin N, Stranz S, Müller K, Wieland T, Ruf WP, Brockmann SJ, et al. Screening for CHCHD10 mutations in a large cohort of sporadic ALS patients: no evidence for pathogenicity of the p.P34S variant. Brain. 2015;139(Pt 2):e8.

    PubMed  Google Scholar 

  61. Wong CH, Topp S, Gkazi A-S, Troakes C, Miller JW, de Majo M, et al. The CHCHD10 P34S variant is not associated with ALS in a UK cohort of familial and sporadic patients. Neurobiol Aging. 2015;36:2908.e17–8.

  62. Abdelkarim S, Morgan S, Plagnol V, Lu C-H, Adamson G, Howard R, et al. CHCHD10 Pro34Ser is not a highly penetrant pathogenic variant for amyotrophic lateral sclerosis and frontotemporal dementia. Brain. 2016;139:e9. doi:10.1093/brain/awv223.

  63. Ronchi D, Riboldi G, Del Bo R, Ticozzi N, Scarlato M, Galimberti D, et al. CHCHD10 mutations in Italian patients with sporadic amyotrophic lateral sclerosis. Brain. 2015;138:e372–2.

    Article  PubMed  Google Scholar 

  64. Dobson-Stone C, Shaw AD, Hallupp M, Bartley L, McCann H, Brooks WS, et al. Is CHCHD10 Pro34Ser pathogenic for frontotemporal dementia and amyotrophic lateral sclerosis? Brain. 2015;138:e385–5.

    Article  PubMed  Google Scholar 

  65. Kurzwelly D, Krüger S, Biskup S, Heneka MT. A distinct clinical phenotype in a German kindred with motor neuron disease carrying a CHCHD10 mutation. Brain. 2015;138:e376–6.

    Article  PubMed  Google Scholar 

  66. Depreux FF, Puckelwartz MJ, Augustynowicz A, Wolfgeher D, Labno CM, Pierre-Louis D, et al. Disruption of the lamin A and matrin-3 interaction by myopathic LMNA mutations. Hum Mol Genet. 2015;24:4284–95.

    Article  CAS  PubMed  Google Scholar 

  67. Feit H, Silbergleit A, Schneider LB, Gutierrez JA, Fitoussi RP, Réyès C, et al. Vocal cord and pharyngeal weakness with autosomal dominant distal myopathy: clinical description and gene localization to 5q31. Am J Hum Genet. 1998;63:1732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Senderek J, Garvey SM, Krieger M, Guergueltcheva V, Urtizberea A, Roos A, et al. Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am J Hum Genet. 2009;84:511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Müller TJ, Kraya T, Stoltenburg-Didinger G, Hanisch F, Kornhuber M, Stoevesandt D, et al. Phenotype of matrin-3-related distal myopathy in 16 German patients. Ann Neurol. 2014;76:669–80.

    Article  PubMed  Google Scholar 

  70. Johnson JO, Pioro EP, Boehringer A, Chia R, Feit H, Renton AE, et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci. 2014;17:664–6. Johnson et al were the first to link matrin-3 and ALS through the identification of mutations in fALS and sALS cases and the observations of matrin-3 proteins in aggregates of ALS patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lin K-P, Tsai P-C, Liao Y-C, Chen W-T, Tsai C-P, Soong B-W, et al. Mutational analysis of MATR3 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2005;2015(36):e1–4.

    Google Scholar 

  72. Origone P, Verdiani S, Bandettini Di Poggio M, Zuccarino R, Vignolo M, Caponnetto C, et al. A novel Arg147Trp MATR3 missense mutation in a slowly progressive ALS Italian patient. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2015; 1–2.

  73. Leblond CS, Gan-Or Z, Spiegelman D, Laurent SB, Szuto A, Hodgkinson A. Replication study of MATR3 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2015;209:e17–21.

    Google Scholar 

  74. Millecamps S, de Septenville A, Teyssou E, Daniau M, Camuzat A, Albert M, et al. Genetic analysis of matrin 3 gene in French amyotrophic lateral sclerosis patients and frontotemporal lobar degeneration with amyotrophic lateral sclerosis patients. Neurobiol Aging. 2014;35:2882.e13–5.

  75. Fifita JA, Williams KL, Mccann EP, O'Brien A, Bauer DC, Nicholson GA, et al. Mutation analysis of MATR3 in Australian familial amyotrophic lateral sclerosis. Neurobiol Aging. 2015;1602(36):e1–2.

    Google Scholar 

  76. Ling S-C, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H, et al. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci. 2010;107:13318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Salton M, Elkon R, Borodina T, Davydov A, Yaspo M-L, Halperin E, et al. Matrin 3 binds and stabilizes mRNA. PLoS One. 2011;6:e23882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jones AR, Troakes C, King A, Sahni V, De Jong S, Bossers K, et al. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes. Neurobiol Aging. 2006;2015(36):e1–9.

    Google Scholar 

  79. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science. 2015;347:1436–41. Cirulli et al. reported a large collaborative exome sequencing effort using >3,000 ALS cases. Several variations in known ALS genes were replicated and TBK1 mutations leading to loss of function were first identified for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631–6.

    Article  CAS  PubMed  Google Scholar 

  81. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 2015;130:77–92.

    Article  CAS  PubMed  Google Scholar 

  82. Williams KL, Mccann EP, Fifita JA, Zhang K, Duncan EL, Leo PJ, et al. Novel TBK1 truncating mutation in a familial amyotrophic lateral sclerosis patient of Chinese origin. Neurobiol Aging. 2015;36:3334.e1–5.

  83. Kenna KP, McLaughlin RL, Byrne S, Elamin M, Heverin M, Kenny EM, et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet. 2013;50:776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van Blitterswijk M, van Es MA, Hennekam EAM, Dooijes D, van Rheenen W, Medic J, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21:3776–84.

    Article  PubMed  Google Scholar 

  85. Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9:617–28.

    Article  CAS  PubMed  Google Scholar 

  86. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13:565–75.

    Article  CAS  PubMed  Google Scholar 

  87. Alexander MD, Traynor BJ, Miller N, Corr B, Frost E, McQuaid S, et al. “True” sporadic ALS associated with a novel SOD-1 mutation. Ann Neurol. 2002;52:680–3.

    Article  CAS  PubMed  Google Scholar 

  88. DeJesus-Hernandez M, Kocerha J, Finch N, Crook R, Baker M, Desaro P, et al. De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum Mutat. 2010;31:E1377–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chiò A, Calvo A, Moglia C, Ossola I, Brunetti M, Sbaiz L, et al. A de novo missense mutation of the FUS gene in a “true” sporadic ALS case. Neurobiol Aging. 2011;32:553.e23–6.

  90. Calvo A, Moglia C, Canosa A, Brunetti M, Barberis M, Traynor BJ, et al. A de novo nonsense mutation of the FUS gene in an apparently familial amyotrophic lateral sclerosis case. Neurobiol Aging. 2014;35:1513.e7–11.

  91. Hübers A, Just W, Rosenbohm A, Müller K, Marroquin N, Goebel I, et al. De novo FUS mutations are the most frequent genetic cause in early-onset German ALS patients. Neurobiol Aging. 2015;36:3117.e1–3117.e6. Hübers et al. identified de novo mutations in FUS as the most important cause of early-onset ALS. This was one of the first attempt to identify de novo mutations in a large cohort of ALS cases.

    Article  Google Scholar 

  92. Laffita-Mesa JM, Rodríguez Pupo JM, Moreno Sera R, Vázquez Mojena Y, Kourí V, Laguna-Salvia L, et al. De novo mutations in ataxin-2 gene and ALS risk. PLoS One. 2013;8:e70560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Elden AC, Kim H-J, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chesi A, Staahl BT, Jovičić A, Couthouis J, Fasolino M, Raphael AR, et al. Exome sequencing to identify de novo mutations in sporadic ALS trios. Nat Neurosci. 2013;16:851–5. Chesi et al. reported the first large study aime de novo mutation in ALS cases identifying mutations in chromatin regulator genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Steinberg KM, Yu B, Koboldt DC, Mardis ER, Pamphlett R. Exome sequencing of case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic ALS. Sci Rep. 2015;5:9124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. López Castel A, Cleary JD, Pearson CE. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol. 2010;11:165–70.

    Article  PubMed  Google Scholar 

  97. Nordin A, Akimoto C, Wuolikainen A, Alstermark H, Jonsson P, Birve A, et al. Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD. Hum Mol Genet. 2015;24:3133–42.

    Article  CAS  PubMed  Google Scholar 

  98. Harms MB, Cady J, Zaidman C, Cooper P, Bali T, Allred P, et al. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol Aging. 2013;34:2234.e13–9.

  99. Leblond CS, Kaneb HM, Dion PA, Rouleau GA. Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp Neurol. 2014;262 Pt B:91–101.

    Article  PubMed  Google Scholar 

  100. Daoud H, Suhail H, Sabbagh M, Belzil V, Szuto A, Dionne-Laporte A, et al. C9orf72 hexanucleotide repeat expansions as the causative mutation for chromosome 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia. Arch Neurol. 2012;69:1159–63.

    Article  PubMed  Google Scholar 

  101. van Es MA, Veldink JH, Saris CGJ, Blauw HM, van Vught PWJ, Birve A, et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat. Genet. 2009;41:1083–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Rouleau.

Ethics declarations

Conflict of Interest

Martine Therrien, Patrick A. Dion, and Guy A. Rouleau declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Therrien, M., Dion, P.A. & Rouleau, G.A. ALS: Recent Developments from Genetics Studies. Curr Neurol Neurosci Rep 16, 59 (2016). https://doi.org/10.1007/s11910-016-0658-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0658-1

Keywords

Navigation