Skip to main content
Log in

Predictors of clinical pain intensity in patients with fibromyalgia syndrome

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Central changes in pain processing have been previously reported in patients with fibromyalgia syndrome. These changes include decreased thresholds to mechanical and thermal stimuli (allodynia) and central sensitization, both of which are fundamental to the generation of clinical pain. Therefore, psychophysical measures of central pain processing may be useful predictors of clinical pain intensity of fibromyalgia syndrome patients. Previous studies of fibromyalgia syndrome patients have shown statistically significant correlations of psychophysical test results with clinical pain intensity. The tests used to characterize this important relationship were dependent on spinal cord pain mechanisms and included temporal summation of pain or wind-up and wind-up after-sensations. Particularly, the magnitude of wind-up after-sensations appeared to be one of the best predictors for clinical pain intensity of fibromyalgia syndrome patients (27%). Furthermore, the combination of tender point count, negative affect, and wind-up aftersensations accounted for approximately 50% of the variance in clinical pain intensity of fibromyalgia syndrome patients. Therefore, wind-up after-sensations, tender point count, and negative affect not only seem to represent relevant pain mechanisms but also strongly emphasize their importance for fibromyalgia syndrome pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Arroyo JF, Cohen ML: Abnormal responses to electrocutaneous stimulation in fibromyalgia. J Rheumatol 1993, 20:1925–1931.

    PubMed  CAS  Google Scholar 

  2. Berglund B, Harju EL, Kosek E, et al.: Quantitative and qualitative perceptual analysis of cold dysesthesia and hyperalgesia in fibromyalgia. Pain 2002, 96:177–187.

    Article  PubMed  Google Scholar 

  3. Simms RW, Goldenberg DL, Felson DT, et al.: Tenderness in 75 anatomic sites. Distinguishing fibromyalgia patients from controls. Arthritis Rheum 1988, 31:182–187.

    Article  PubMed  CAS  Google Scholar 

  4. Jensen K, Andersen HO, Olesen J, et al.: Pressure-pain threshold in human temporal region. Evaluation of a new pressure algometer. Pain 1986, 25:313–323.

    Article  PubMed  CAS  Google Scholar 

  5. Ohrbach R, Gale EN: Pressure pain thresholds in normal muscles: reliability, measurement effects, and topographic differences. Pain 1989, 37:257–263.

    Article  PubMed  CAS  Google Scholar 

  6. Ohrbach R, Gale EN: Pressure pain thresholds, clinical assessment, and differential diagnosis: reliability and validity in patients with myogenic pain. Pain 1989, 39:157–169.

    Article  PubMed  CAS  Google Scholar 

  7. Kosek E, Ekholm J, Nordemar R: A comparison of pressure pain thresholds in different tissues and body regions. Longterm reliability of pressure algometry in healthy volunteers. Scand J Rehabil Med 1993, 25:117–124.

    PubMed  CAS  Google Scholar 

  8. Henriksson CM: Longterm effects of fibromyalgia on everyday life. A study of 56 patients. Scand J Rheumatol 1994, 23:36–41.

    PubMed  CAS  Google Scholar 

  9. Hudson JI, Goldenberg DL, Pope HG, Jr., et al.: Comorbidity of fibromyalgia with medical and psychiatric disorders. Am J Med 1992, 92:363–367.

    Article  PubMed  CAS  Google Scholar 

  10. Soderberg S, Lundman B, Norberg A: The meaning of fatigue and tiredness as narrated by women with fibromyalgia and healthy women. J Clin Nurs 2002, 11:247–255.

    Article  PubMed  Google Scholar 

  11. Wolfe F, Ross K, Anderson J, et al.: Aspects of fibromyalgia in the general population: sex, pain threshold, and fibromyalgia symptoms. J Rheumatol 1995, 22:151–156.

    PubMed  CAS  Google Scholar 

  12. Wolfe F, Hawley DJ, Wilson K: The prevalence and meaning of fatigue in rheumatic disease. J Rheumatol 1996, 23:1407–1417.

    PubMed  CAS  Google Scholar 

  13. Gracely RH, Petzke F, Wolf JM, et al.: Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 2002, 46:1333–1343.

    Article  PubMed  Google Scholar 

  14. Petzke F, Clauw DJ, Ambrose K, et al.: Increased pain sensitivity in fibromyalgia: effects of stimulus type and mode of presentation. Pain 2003, 105:403–413. Fibromyalgia syndrome patients were more sensitive than NC to heat and mechanical stimuli, presented in ascending or random paradigms. In the patient and NC groups, the pain ratings to painful sensations evoked by thermal and pressure stimuli were significantly greater in the random, compared with the ascending method. The increased sensitivity to mechanical and thermal stimuli at threshold and suprathreshold levels in FMS patients was consistent with central augmentation of pain processing.

    Article  PubMed  Google Scholar 

  15. Jensen TS, Gottrup H, Sindrup SH, et al.: The clinical picture of neuropathic pain. Eur J Pharmacol 2001, 429:1–11.

    Article  PubMed  CAS  Google Scholar 

  16. Wolfe F, Smythe HA, Yunus MB, et al.: The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum 1990, 33:160–172.

    Article  PubMed  CAS  Google Scholar 

  17. Wolfe F: The relation between tender points and fibromyalgia symptom variables: evidence that fibromyalgia is not a discrete disorder in the clinic. Ann Rheum Dis 1997, 56:268–271.

    Article  PubMed  CAS  Google Scholar 

  18. Granges G, Littlejohn G: Pressure pain threshold in pain-free subjects, in patients with chronic regional pain syndromes, and in patients with fibromyalgia syndrome. Arthritis Rheum 1993, 36:642–646.

    Article  PubMed  CAS  Google Scholar 

  19. Jensen B, Wittrup IH, Rogind H, et al.: Correlation between tender points and the fibromyalgia impact questionnaire. J Musculoskelet Pain 2000, 8:19–29.

    Article  Google Scholar 

  20. McBeth J, Macfarlane GJ, Benjamin S, et al.: The association between tender points, psychological distress, and adverse childhood experiences: a community-based study. Arthritis Rheum 1999, 42:1397–1404.

    Article  PubMed  CAS  Google Scholar 

  21. Croft P, Schollum J, Silman A: Population study of tender point counts and pain as evidence of fibromyalgia. BMJ 1994, 309:696–699.

    PubMed  CAS  Google Scholar 

  22. Croft PR, Burt J, Schollum J, et al.: More pain, more tender points: is fibromyalgia just one end of a continuous spectrum? Ann Rheum Dis 1996, 55:482–485.

    Article  PubMed  CAS  Google Scholar 

  23. Jacobs JW, Rasker JJ, van-der Heide A, et al.: Lack of correlation between the mean tender point score and self-reported pain in fibromyalgia. Arthritis Care Res 1996, 9:105–111.

    Article  PubMed  CAS  Google Scholar 

  24. Quimby LG, Block SR, Gratwick GM: Fibromyalgia: generalized pain intolerance and manifold symptom reporting. J Rheumatol 1988, 15:1264–1270.

    PubMed  CAS  Google Scholar 

  25. Hewett JE, Buckelew SP, Johnson JC, et al.: Selection of measures suitable for evaluating change in fibromyalgia clinical trials. J Rheumatol 1995, 22:2307–2312.

    PubMed  CAS  Google Scholar 

  26. Staud R, Vierck CJ, Cannon RL, et al.: Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain 2001, 91:165–175.

    Article  PubMed  CAS  Google Scholar 

  27. Vierck CJ, Jr., Staud R, Price DD, et al.: The effect of maximal exercise on temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. J Pain 2001, 2:334–344.

    Article  PubMed  Google Scholar 

  28. Price DD, Staud R, Robinson ME, et al.: Enhanced temporal summation of second pain and its central modulation in fibromyalgia patients. Pain 2002, 99:49–59.

    Article  PubMed  Google Scholar 

  29. Staud R, Cannon RC, Mauderli AP, et al.: Temporal summation of pain from mechanical stimulation of muscle tissue in normal controls and subjects with fibromyalgia syndrome. Pain 2003, 102:87–95. Moderate temporal summation of deep pain was observed for NC, and temporal summation was greatly exaggerated for FMS subjects. Temporal summation for FMS subjects occurred at substantially lower forces and at a lower frequency of stimulation. Furthermore, painful after-sensations were greater in amplitude and more prolonged for FMS subjects. Abnormal input from muscle nociceptors appears to underlie production of CS in FMS that generalizes to input from cutaneous nociceptors.

    Article  PubMed  Google Scholar 

  30. Graven-Nielsen T, Aspegren-Kendall S, Henriksson KG, et al.: Ketamine reduces muscle pain, temporal summation, and referred pain in fibromyalgia patients. Pain 2000, 85:483–491.

    Article  PubMed  CAS  Google Scholar 

  31. Dickenson AH, Sullivan AF: Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology 1987, 26:1235–1238.

    Article  PubMed  CAS  Google Scholar 

  32. Price DD, Mao J, Frenk H, et al.: The N-methyl-D-aspartate receptor antagonist dextromethorphan selectively reduces temporal summation of second pain in man. Pain 1994, 59:165–174.

    Article  PubMed  CAS  Google Scholar 

  33. Bennett GJ: Update on the neurophysiology of pain transmission and modulation: focus on the NMDA-receptor. J Pain Symptom Manage 2000, 19:S2-S6.

    Article  PubMed  CAS  Google Scholar 

  34. Mendell LM: Physiological properties of unmyelinated fiber projection to the spinal cord. Exp Neurol 1966, 16:316–332.

    Article  PubMed  CAS  Google Scholar 

  35. Price DD: Characteristics of second pain and flexion reflexes indicative of prolonged central summation. Exp Neurol 1972, 37:371–387.

    Article  PubMed  CAS  Google Scholar 

  36. Price DD, Hu JW, Dubner R, et al.: Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain 1977, 3:57–68.

    Article  PubMed  CAS  Google Scholar 

  37. Price DD, Hayes RL, Ruda M, et al.: Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J Neurophysiol 1978, 41:933–947.

    PubMed  CAS  Google Scholar 

  38. Torebjork HE, Hallin RG: Identification of afferent C units in intact human skin nerves. Brain Res 1974, 67:387–403.

    Article  PubMed  CAS  Google Scholar 

  39. Arendt-Nielsen L, Petersen-Felix S: Wind-up and neuroplasticity: is there a correlation to clinical pain? Eur J Anaesthesiol 1995, 10(Suppl):1–7.

    CAS  Google Scholar 

  40. Staud R, Robinson ME, Vierck CJ, et al.: Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain 2003, 101:167–174.

    Article  PubMed  Google Scholar 

  41. Li J, Simone DA, Larson AA: Windup leads to characteristics of central sensitization. Pain 1999, 79:75–82.

    Article  PubMed  CAS  Google Scholar 

  42. Dickenson AH, Sullivan AF: NMDA receptors and central hyperalgesic states. Pain 1991, 46:344–346.

    Article  PubMed  CAS  Google Scholar 

  43. Price DD, Mao J, Mayer DJ: Central neural mechanisms of normal and abnormal pain states. In Pharmacological Approaches to the Treatment of Pain: New Concepts and Critical Issues. Edited by Fields HL, Liebeskind JC. Seattle: IASP Press; 1994:61–84.

    Google Scholar 

  44. Budai D, Larson AA: Role of substance P in the modulation of C-fiber-evoked responses of spinal dorsal horn neurons. Brain Res 1996, 710:197–203.

    Article  PubMed  CAS  Google Scholar 

  45. Kellstein DE, Price DD, Hayes RL, et al.: Evidence that substance P selectively modulates C-fiber-evoked discharges of dorsal horn nociceptive neurons. Brain Res 1990, 526:291–298.

    Article  PubMed  CAS  Google Scholar 

  46. Von Euler US: The history of substance P. In Neurotransmitters in Action. Edited by Bousfield D. New York: Elsevier Biomedical Press; 1985:143–150.

    Google Scholar 

  47. Salt TE, Hill RG: Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience 1983, 10:1083–1103.

    Article  PubMed  CAS  Google Scholar 

  48. Salt TE, Morris R, Hill RG: Distribution of substance P-responsive and nociceptive neurones in relation to substance P-immunoreactivity within the caudal trigeminal nucleus of the rat. Brain Res 1983, 273:217–228.

    Article  PubMed  CAS  Google Scholar 

  49. Strittmatter M, Grauer M, Isenberg E, et al.: Cerebrospinal fluid neuropeptides and monoaminergic transmitters in patients with trigeminal neuralgia. Headache 1997, 37:211–216.

    Article  PubMed  CAS  Google Scholar 

  50. Bradley LA, Alarcon GS, Sotolongo A, et al.: Cerebrospinal fluid (CSF) levels of substance P (SP) are abnormal in patients with fibromyalgia (FM) regardless of traumatic or insidious pain onset. Arthritis Rheum 1998, 41:S256.

    Article  Google Scholar 

  51. Larson AA, Giovengo SL, Russell IJ, et al.: Changes in the concentrations of amino acids in the cerebrospinal fluid that correlate with pain in patients with fibromyalgia: implications for nitric oxide pathways. Pain 2000, 87:201–211.

    Article  PubMed  CAS  Google Scholar 

  52. Russell IJ, Fletcher EM, Vipraio GA, et al.: Cerebrospinal fluid (CSF) substance P (SP) in fibromyalgia (FMS): changes in CSP SP over time parallel changes in clinical activity. Arthritis Rheum 1998, 41:S256.

    Article  Google Scholar 

  53. Staud R: The evidence for involvement of central neural mechanisms in generating fibromyalgia pain. Curr Rheumatol Rep 2002, 4:299–305.

    Article  PubMed  Google Scholar 

  54. Woolf CJ, Costigan M: Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci U S A 1999, 96:7723–7730.

    Article  PubMed  CAS  Google Scholar 

  55. Woolf CJ: Evidence for a central component of post-injury pain hypersensitivity. Nature 1983, 306:686–688.

    Article  PubMed  CAS  Google Scholar 

  56. Cook AJ, Woolf CJ, Wall PD, et al.: Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature 1987, 325:151–153.

    Article  PubMed  CAS  Google Scholar 

  57. Torebjork HE, Lundberg LE, LaMotte RH: Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol 1992, 448:765–780.

    PubMed  CAS  Google Scholar 

  58. Wall PD, Woolf CJ: The brief and the prolonged facilitatory effects of unmyelinated afferent input on the rat spinal cord are independently influenced by peripheral nerve section. Neuroscience 1986, 17:1199–1205.

    Article  PubMed  CAS  Google Scholar 

  59. Woolf CJ, Wall PD: Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J Neurosci 1986, 6:1433–1442.

    PubMed  CAS  Google Scholar 

  60. Staud R, Price DD, Robinson ME, et al.: Pain area and negative affect predict clinical pain in patients with fibromyalgia syndrome. J Pain 2004, in press.

  61. Bengtsson M, Bengtsson A, Jorfeldt L: Diagnostic epidural opioid blockade in primary fibromyalgia at rest and during exercise. Pain 1989, 39:171–180.

    Article  PubMed  CAS  Google Scholar 

  62. Dubner R, Sharav Y, Gracely RH, et al.: Idiopathic trigeminal neuralgia: sensory features and pain mechanisms. Pain 1987, 31:23–33.

    Article  PubMed  CAS  Google Scholar 

  63. Price DD, Bennett GJ, Rafii A: Psychophysical observations on patients with neuropathic pain relieved by a sympathetic block. Pain 1989, 36:273–288.

    Article  PubMed  CAS  Google Scholar 

  64. Price DD, Long S, Huitt C: Sensory testing of pathophysiological mechanisms of pain in patients with reflex sympathetic dystrophy. Pain 1992, 49:163–173.

    Article  PubMed  CAS  Google Scholar 

  65. Mannion RJ, Woolf CJ: Pain mechanisms and management: a central perspective. Clin J Pain 2000, 16:S144-S156.

    Article  PubMed  CAS  Google Scholar 

  66. Basbaum AI: Distinct neurochemical features of acute and persistent pain. Proc Natl Acad Sci U S A 1999, 96:7739–7743.

    Article  PubMed  CAS  Google Scholar 

  67. Gaskin ME, Greene AF, Robinson ME, et al.: Negative affect and the experience of chronic pain. J Psychosom Res 1992, 36:707–713.

    Article  PubMed  CAS  Google Scholar 

  68. Geisser ME, Robinson ME, Keefe FJ, et al.: Catastrophizing, depression and the sensory, affective and evaluative aspects of chronic pain. Pain 1994, 59:79–83.

    Article  PubMed  CAS  Google Scholar 

  69. Robinson ME, Riley JL: The role of emotion in pain. In Psychosocial Factors in Pain. Edited by Gatchel RJ, Turk DC. New York: Guilford Press; 1998:74–89.

    Google Scholar 

  70. Keefe FJ, Wilkins RH, Cook-WA J, et al.: Depression, pain, and pain behavior. J Consult Clin Psychol 1986, 54:665–669.

    Article  PubMed  CAS  Google Scholar 

  71. Wolfe F, Russell IJ, Vipraio G, et al.: Serotonin levels, pain threshold, and fibromyalgia symptoms in the general population. J Rheumatol 1997, 24:555–559.

    PubMed  CAS  Google Scholar 

  72. Burckhardt CS, Clark SR, Bennett RM: A comparison of pain perceptions in women with fibromyalgia and rheumatoid arthritis: relationship to depression and pain extent. Arthritis Care Res 1992, 5:216–222.

    Article  PubMed  CAS  Google Scholar 

  73. Almay BG: Clinical characteristics of patients with idiopathic pain syndromes. Depressive symptomatology and patient pain drawings. Pain 1987, 29:335–346.

    Article  PubMed  CAS  Google Scholar 

  74. Malt EA, Olafsson S, Lund A, et al.: Factors explaining variance in perceived pain in women with fibromyalgia. BMC Musculoskelet Disord 2002, 3:12–20. Although fibromyalgia patients scored high on neuroticism, anxiety, depression, and general distress, only a minor part of variance in pain was explained by psychologic factors alone. High pain score was associated with high neuroticism, low baseline cortisol level, and small drop in systolic blood pressure after buspirone challenge test (to assess autonomic reactivity to a serotonergic challenge). This model explained 41.5% of total pain in fibromyalgia patients.

    Article  PubMed  Google Scholar 

  75. Staud R, Robinson ME, Vierck CJ, Jr., et al.: Ratings of experimental pain and pain-related negative affect predict clinical pain in patients with fibromyalgia syndrome. Pain 2003, 105:215–222. Pain related negative affect, abnormal WU, and abnormal WU decay are frequently present in FMS patients. WU and WU decay can provide measures of CS, which may contribute to clinical FMS pain. Hierarchical regression analysis demonstrated that the combination of negative affect ratings, TP count, and WU decay ratings predicted 49.7% of the variance of clinical pain in FMS. These findings demonstrate the relationship of biologic and psychologic factors to clinical pain and underscore the important role of abnormal peripheral and central pain mechanisms for FMS.

    Article  PubMed  Google Scholar 

  76. Crofford LJ, Demitrack MA: Evidence that abnormalities of central neurohormonal systems are key to understanding fibromyalgia and chronic fatigue syndrome. Rheum Dis Clin North Am 1996, 22:267–284.

    Article  PubMed  CAS  Google Scholar 

  77. Crofford LJ: The hypothalamic-pituitary-adrenal axis in fibromyalgia: where are we in 2001? J Musculoskelet Pain 2002, 10:215–220.

    Article  Google Scholar 

  78. Pillemer SR, Bradley LA, Crofford LJ, et al.: The neuroscience and endocrinology of fibromyalgia. Arthritis Rheum 1997, 40:1928–1939.

    Article  PubMed  CAS  Google Scholar 

  79. Crofford LJ: The hypothalamic pituitary adrenal stress axis in fibromyalgia and chronic fatigue syndrome. Z Rheumatol 1998, 57:67–71.

    Article  PubMed  Google Scholar 

  80. Neeck G, Crofford LJ: Neuroendocrine perturbations in fibromyalgia and chronic fatigue syndrome. Rheum Dis Clin North Am 2000, 26:989–1002.

    Article  PubMed  CAS  Google Scholar 

  81. Bridge MW, Marvin G, Thompson CE, et al.: Quantifying the 5-HT1A agonist action of buspirone in man. Psychopharmacology (Berl) 2001, 158:224–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staud, R. Predictors of clinical pain intensity in patients with fibromyalgia syndrome. Current Science Inc 9, 316–321 (2005). https://doi.org/10.1007/s11916-005-0006-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-005-0006-7

Keywords

Navigation