Skip to main content

Advertisement

Log in

Peripheral blood fibrocytes: Mesenchymal precursor cells and the pathogenesis of fibrosis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Peripheral blood fibrocytes are a novel population of cells that rapidly enter sites of tissue injury and contribute to connective scar formation. Fibrocytes display a distinct cell surface phenotype (CD34+/CD45+/collagen I+), and are an abundant source of cytokines and growth factors that function to attract and activate inflammatory and connective tissue cells. Fibrocytes also are specialized to activate naïve T cells against foreign antigen, and may play a critical role in the initiation of cognate immunity during the earliest phases of tissue injury. Recently, immunohistochemical studies of fibrotic tissues have shown that fibrocytes co-localize to areas of connective tissue matrix deposition. Peripheral blood fibrocytes thus may participate in the generation of excessive fibroses associated with various autoimmune disorders involving a persistent T-cell activation, as occurs in scleroderma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Wahl LM, Wahl SM: Inflammation. In In Wound Healing: Biochemical and Clinical Aspects. Edited by Cohen RF, Diegelman RF, Lindblad WJ. Philadelphia: WB Saunders; 1992:40–62.

    Google Scholar 

  2. Clark RAF: Wound repair: overview and general considerations. In The Molecular and Cellular Biology of Wound Repair. Edited by Clark RAF. New York: Plenum; 1996:3–35.

    Google Scholar 

  3. Rappolee DA, Mark D, Banda MJ, Werb Z: Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by MRNA phenotyping. Science 1988, 241(4866):708–712.

    Article  PubMed  CAS  Google Scholar 

  4. Morgan CJ, Pledger WJ: Fibroblast proliferation. In Wound Healing. Edited by Cohen IK, Diegelman RF, Lindblad WJ. Philadelphia: WB Saunders; 1992:63–76.

    Google Scholar 

  5. Kovacs EJ, DiPietro LA: Fibrogenic cytokines and connective tissue production. FASEB J 1994, 8(11):854–861.

    PubMed  CAS  Google Scholar 

  6. Paget J: Lectures on Surgical Pathology Delivered at the Royal College of Surgeons of England. In London: Longmans; 1863. 7. Dunphy J: The fibroblast—a ubiquitous ally for the surgeon. N Engl J Med 1963, 268:1367–1377.

    Article  Google Scholar 

  7. Jackson DS: Specialized functions of connective tissue cells. In In The Biology of the Connective Tissue Cells. New York: Arthritis and Rheumatism Foundation; 1991:172–178.

    Google Scholar 

  8. Petrakis NL, Davis M, Lucia SP: In vivo differentiation of human leukocytes into histiocytes, fibroblasts, and fat cells in subcutaneous diffusion chambers. Blood 1961, 17:109–118.

    PubMed  CAS  Google Scholar 

  9. Labat ML, Bringuier AF, Arys-Philippart C, et al.: Monocytic origin of fibrosis. In vitro transformation of HLA-DR monocytes into neo-fibroblasts: inhibitory effect of all-trans retinoic acid on this process. Biomed Pharmacother 1994, 48(2):103–111.

    Article  PubMed  CAS  Google Scholar 

  10. Bucala R, Spiegel LA, Chesney J, et al.: Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994, 1(1):71–81.

    PubMed  CAS  Google Scholar 

  11. Diegelmann RF, Lindblad WJ, Cohen IK: A subcutaneous implant for wound healing studies in humans. J Surg Res 1986, 40(3):229–237.

    Article  PubMed  CAS  Google Scholar 

  12. Diegelmann RF, Kim JC, Lindblad WJ, et al.: Collection of leukocytes, fibroblasts, and collagen within an implantable reservoir tube during tissue repair. J Leukocyte Biol 1987, 42(6):667–672.

    PubMed  CAS  Google Scholar 

  13. Freudenthal PS, Steinman RM: The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc Natl Acad Sci USA 1990, 87(19):7698–7702.

    Article  PubMed  CAS  Google Scholar 

  14. Galy A, Travis M, Cen D, Chen B: Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995, 3(4):459–473.

    Article  PubMed  CAS  Google Scholar 

  15. Barclay AN, Beyers AB, Birkeland ML, et al.: The Leukocyte Antigen Facts Book. New York: Academic Press; 1993.

    Google Scholar 

  16. Chesney J, Metz C, Stavitsky AB, et al.: Regulated production of Type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 1998, 160(1):419–425. This study led to the conclusion that fibrocytes are an important source of cytokines and type I collagen during both the inflammatory and the repair phase of the wound healing response.

    PubMed  CAS  Google Scholar 

  17. Kishimoto T, Akira S, Taga T: Interleukin-6 and its receptor:a paradigm for cytokines. Science 1992, 258(5082):593–597.

    Article  PubMed  CAS  Google Scholar 

  18. Callard R, Gearing A: The Cytokine Facts Book. New York: Academic Press, 1994.

    Google Scholar 

  19. Ford HR, Hoffman RA, Wing EJ, et al.: Characterization of wound cytokines in the sponge matrix model. Arch Surg 1989, 124(12):1422–1428.

    PubMed  CAS  Google Scholar 

  20. Mast BA: The skin. In Wound Healing: Biochemical and Clinical Aspects. Edited by Cohen IK, Diegelman RF, Lindblad WJ. Philadelphia: WB Saunders; 1992:344–355.

    Google Scholar 

  21. Chu T, Jaffe R: The normal Langerhans cell and the LCH cell. Br J Cancer Suppl 1994, 23:S4-S10.

    PubMed  CAS  Google Scholar 

  22. Chesney J, Bacher M, Bender A, Bucala R: The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T Cells in situ. Proc Natl Acad Sci USA 1997, 94(12):6307–6312.

    Article  PubMed  CAS  Google Scholar 

  23. Geppert TD, Lipsky PE: Antigen presentation by interferongamma-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression. J Immunol 1985, 135(6):3750–3762.

    PubMed  CAS  Google Scholar 

  24. Pober JS, Gimbrone MA Jr, Cotran RS, et al.: Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J Exp Med 1983, 157(4):1339–1353.

    Article  PubMed  CAS  Google Scholar 

  25. Le PooleIC, Mutis T, van den WijngaardRM, et al.: A novel, antigen-presenting function of melanocytes and its possible relationship to hypopigmentary disorders. J Immunol 1993, 151(12):7284–7292.

    PubMed  Google Scholar 

  26. Inaba K, Metlay JP, Crowley MT, Steinman RM: Dendritic cells pulsed with protein antigens in vitro can prime antigenspecific, MHC-restricted T cells in situ. J Exp Med 1990, 172(2):631–640.

    Article  PubMed  CAS  Google Scholar 

  27. Levin D, Constant S, Pasqualini T, et al.: Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo. J Immunol 1993, 151(12):6742–6750.

    PubMed  CAS  Google Scholar 

  28. Schall TJ, Bacon K, Camp RD, et al.: Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 1993, 177(6):1821–1826.

    Article  PubMed  CAS  Google Scholar 

  29. Warren KS, Domingo EO, Cowan RB: Granuloma formation around schistosome eggs as a manifestation of delayed hypersensitivity. Am J Pathol 1967, 51(5):735–756.

    PubMed  CAS  Google Scholar 

  30. Shero JH, Bordwell B, Rothfield NF, Earnshaw WC: High titers of autoantibodies to topoisomerase I (Scl-70) in sera from scleroderma patients. Science 1986, 231(4739):737–740.

    Article  PubMed  CAS  Google Scholar 

  31. Shero JH, Bordwell B, Rothfield NF, Earnshaw WC: Antibodies to topoisomerase I in sera from patients with scleroderma. J Rheumatol 1987, 14(suppl 13):138–140.

    Google Scholar 

  32. Martini A, Maccario R, Ravelli A, et al.: Marked and sustained improvement two years after autologous stem cell transplantation in a girl with systemic sclerosis. Arthritis Rheum 1999, 42(4):807–811. Interesting case report.

    Article  PubMed  CAS  Google Scholar 

  33. Evans PC, Lambert N, Maloney S, et al.: Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 1999, 93(6):2033–2037. This study asked asked whether persistent microchimerism might contribute to subsequent autoimmune disease in the mother.

    PubMed  CAS  Google Scholar 

  34. Aiba S, Tabata N, Ohtani H, Tagami H: CD34+ spindle-shaped cells selectively disappear from the skin lesion of scleroderma. Arch Dermatol 1994, 130(5):593–597.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesney, J., Bucala, R. Peripheral blood fibrocytes: Mesenchymal precursor cells and the pathogenesis of fibrosis. Curr Rheumatol Rep 2, 501–505 (2000). https://doi.org/10.1007/s11926-000-0027-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-000-0027-5

Keywords

Navigation