Skip to main content
Log in

Comparison Between Systems for Synthesis of Fructooligosaccharides from Sucrose Using Free Inulinase from Kluyveromyces marxianus NRRL Y-7571

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work is focused on the synthesis of the fructooligosaccharides (FOS) from sucrose using free inulinase from Kluyveromyces marxianus NRRL Y-7571 in aqueous and aqueous–organic systems. The most significant variables for the aqueous–organic system were identified using a fractional factorial design. The evaluated variables were the temperature, pH, sucrose concentration, inulinase activity, aqueous/organic ratio, and the polyethylene glycol concentration. The use of sequential experimental design methodology was shown to be very useful in the optimization of the FOS synthesis by inulinase either in aqueous or aqueous–organic systems. For the aqueous–organic system, the maximum Y FOS reached was 16.7 ± 1.1 wt.% with the following operational conditions: temperature of 40 °C, enzyme activity of 4 U mL−1, organic solvent/total system ratio of 25/100, pH of 6.0, and sucrose concentration of 55%. In the aqueous system, the maximum conversion obtained was 12.8 ± 1.0 wt.% under the following conditions: 40 °C, pH 5.0, 55% sucrose, and inulinase activity 4 U mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aboudzadeh, M. R., Jiawen, Z., & Bin, W. (2006). Modeling of protein adsorption to DEAE sepharose FF: Comparison of data with model simulation. Korean Journal of Chemical Engineering, 23, 124–130.

    Article  CAS  Google Scholar 

  • Cazetta, M. L., Martins, P. M. M., Monti, R., & Contiero, J. (2005). Yacon (Polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus. Journal of Food Engineering, 66, 301–305.

    Article  Google Scholar 

  • Chien, C. S., Lee, W. C., & Lin, T. J. (2001). Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme and Microbial Technology, 29, 252–257.

    Article  CAS  Google Scholar 

  • Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87, 287–291.

    Article  Google Scholar 

  • Gill, P. K., Manhas, R. K., & Singh, P. (2006). Purification and properties of a heat-stable exoinulinase isoform from Aspergillus fumigatus. Bioresource Technology, 97, 894–902.

    Article  CAS  Google Scholar 

  • Haaland, P. D. (1989). Experimental design in biotechnology. New York: Marcel Dekker.

    Google Scholar 

  • Illanes, A., & Barberis, S. (1994). Catalisis enzimatica en fase organica. Chile: Ediciones Universitarias de Valparaíso de la Universidad Católica de Valparaíso.

    Google Scholar 

  • Jing, W., Zhengyu, J., Bo, J., & Augustine, A. (2003). Production and separation of exo- and endoinulinase from Aspergillus ficum. Process Biochemistry, 39, 5–11.

    Article  Google Scholar 

  • Jong, W. Y., Yong, J. C., Chii, H. S., & Seung, K. S. (1999). Microbial production on inulo-oligosaccharydes by an endoinulinase from Pseudomonas sp. expressed in Escherichia coli. Journal of Bioscience and Bioengineering, 87, 291–295.

    Article  Google Scholar 

  • Klibanov, A. M. (2001). Improving enzymes by using them in organic solvents. Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  • Losada, M. A., & Olleros, T. (2002). Towards a healthier diet for the colon: The influence of fructooligosaccharides and lactobacilli on intestinal health. Nutrition Research, 22, 71–84.

    Article  CAS  Google Scholar 

  • Makino, Y., Treichel, H., Mazutti, M. A., Maugeri, F., & Rodrigues, M. I. (2009). Inulinase bio-production using agroindustrial residues: Screening of microorganisms and process parameters optimization. Journal of Chemical Technology and Biotechnology, 84, 1056–1062.

    Article  CAS  Google Scholar 

  • Mazutti, M. A., Bender, J. P., Di Luccio, M., & Treichel, H. (2006). Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate. Enzyme and Microbial Technology, 39, 56–59.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalisylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Mutanda, T., Wilhelmi, B. S., & Whiteley, C. G. (2008). Response surface methodology: Synthesis of inulooligosaccharides with an endoinulinase from Aspergillus niger. Enzyme and Microbial Technology, 43(4–5), 362–368. doi:10.1016/j.enzmictec.2008.06.005.

    Article  CAS  Google Scholar 

  • Ogino, H., & Ishikawa, H. (2001). Enzymes which are stable in the presence of organic solvents. Journal of Bioscience and Bioengineering, 91, 109–116.

    CAS  Google Scholar 

  • Palframan, R. J., Gibson, G. R., & Rastall, R. A. (2002). Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro. Anaerobe, 8, 287–292.

    Article  CAS  Google Scholar 

  • Park, J. P., Bae, J. T., You, D. J., Kim, B. W., & Yun, J. W. (1999). Production of inulooligosaccharydes from inulin by a novel endo inulinase from Xanthomonas sp. Biotechnology Letters, 21, 1043–1046.

    Article  CAS  Google Scholar 

  • Quiroga, E., Camí, G., Marchese, J., & Barberis, S. (2007). Organic solvents effect on the secondary structure of araujiain hI, in different media. Biochemical Engineering Journal, 35, 198–202.

    Article  CAS  Google Scholar 

  • Rodrigues, M. I., & Iemma, A. F. (2005). Planejamento de experimentos e otimização de processos: uma estratégia seqüencial de planejamentos. Campinas: Casa do Pão Editora.

    Google Scholar 

  • Sanchéz, O. F., Rodriguez, A. M., Silva, E., & Caicedo, L. A. (2008). Sucrose biotranformation to fructooligosaccharides by Aspergillus sp. N74 free cells. Food and Bioprocess Technology, doi:10.1007/s11947-008-0121-7.

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Production of fructo-oligosaccharides by fructosyltransferase from Aspergillus oryzea CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 755–760.

    Article  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Maximization of fructooligosaccharides production by two stage continuous processes and its scale up. Journal of Food Engineering, 68, 57–64.

    Article  Google Scholar 

  • Santos, A. M. P., & Maugeri, F. (2007). Synthesis of fructooligosaccharides from sucrose using inulinase from Kluyveromyces marxianus. Food Technology and Biotechnology, 45, 181–186.

    CAS  Google Scholar 

  • Santos, A. M. P., Oliveira, M. G., & Maugeri, F. (2007). Modeling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design. Bioresource Technology, 98, 3142–3148.

    Article  CAS  Google Scholar 

  • Selvakumar, P., & Pandey, A. (1999). Solid state fermentation for the synthesis of inulinase from staphylococcus sp. and Kluyveromyces marxianus. Process Biochemistry, 34, 851–855.

    Article  CAS  Google Scholar 

  • Sguarezi, C., Longo, C., Ceni, G., Boni, G., Silva, M. F., Di Luccio, M., et al. (2008). Inulinase production by agroindustrial residues: acid pretreatment of substrates and optimization of production. Food and Bioprocess Technology, doi:10.1007/s11947-007-0042-x.

  • Silva-Santisteban, B. O. Y., & Maugeri, F. (2005). Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzyme and Microbial Technology, 36, 717–724.

    Article  CAS  Google Scholar 

  • Treichel, H., Mazutti, M. A., Maugeri, F., & Rodrigues, M. I. (2009). Use of a sequential strategy of experimental design to optimize the inulinase production in a batch bioreactor. Journal of Industrial Microbiology and Biotechnology, 36, 895–900.

    Article  CAS  Google Scholar 

  • Vanková, K., Onderkova, Z., Antosová, M., & Polakovic, M. (2008). Design and economics of industrial production of fructooligosaccharides. Chemical Papers, 62, 375–381.

    Article  Google Scholar 

  • Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2008). Production of fructooligosaccharides by crude enzyme preparations of β-fructanofuranosidase from Aureobasidium pullulans. Biotechnology Letters, 30, 535–539.

    Article  CAS  Google Scholar 

  • Yun, J. W. (1996). Fructooligosaccharides—Occurrence, preparation and application. Enzyme and Microbial Technology, 19, 107–117.

    Article  CAS  Google Scholar 

  • Yun, J. W., Kim, D. H., Yoon, H. B., & Song, S. K. (1997). Effect of inulin concentration on the production of inulo-oligosaccharides by soluble and immobilized endoinulinase. Journal of Fermentation and Bioengineering, 84, 365–368.

    Article  CAS  Google Scholar 

  • Zaks, A., & Klibanov, A. M. (1998). The effect of water on enzyme action in organic media. Journal of Biological Chemistry, 263, 8017–8021.

    Google Scholar 

  • Zhang, L., Zhao, C., Zhu, D., Otha, Y., & Wang, Y. (2004). Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Picchia Pastoris. Protein Expression and Purification, 35, 272–275.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CAPES and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcio A. Mazutti or Helen Treichel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risso, F.V.A., Mazutti, M.A., Treichel, H. et al. Comparison Between Systems for Synthesis of Fructooligosaccharides from Sucrose Using Free Inulinase from Kluyveromyces marxianus NRRL Y-7571. Food Bioprocess Technol 5, 331–337 (2012). https://doi.org/10.1007/s11947-009-0272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0272-1

Keywords

Navigation