Skip to main content
Log in

High-Pressure Processing Technologies for the Pasteurization and Sterilization of Foods

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The food-processing industry has made large investments in processing facilities relying mostly on conventional thermal processing technologies with well-established reliability and efficacy. Replacing them with one of the novel alternatives recently developed is a decision that must be carefully approached. Among them, high-pressure processing (HPP), at room or refrigerated temperature, is now a well-established option experiencing worldwide commercial growth. Surveys have shown an excellent consumer acceptance of HPP technology. For financial feasibility reasons, HPP treatments must be kept short, a challenge that can be met by some of the alternatives here reviewed such as the use of the hurdle technology concept. Although HPP technology is limited to pasteurization treatments, the combination of high pressure and high temperature used in pressure-assisted thermal processing (PATP) can be used to sterilize foods. An analysis of alternatives to achieve the inactivation of bacterial spores at the lowest temperature possible highlights the need for additional research on the use of germinants. Because of incomplete research, PATP presents several implementation challenges, including the modeling of food temperature, the determination of inactivation kinetics particularly for bacterial spores, and the prediction of chemical changes including the potential formation of toxic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn, J., & Balasubramaniam, V. M. (2007). Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing. Journal of Microbiology and Biotechnology, 17(4), 616–623.

    Google Scholar 

  • Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 113(3), 321–329.

    CAS  Google Scholar 

  • Akhtar, S., Paredes-Sabja, D., Torres, J. A., & Sarker, M. R. (2009). Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiology, 26, 272–277.

    CAS  Google Scholar 

  • Anderson, W. A., McClure, P. J., Baird Parker, A. C., & Cole, M. B. (1996). The application of a log-logistic model to describe the thermal inactivation of Clostridium botulinum 213B at temperatures below 121.1 °C. The Journal of Applied Bacteriology, 80(3), 283–290.

    CAS  Google Scholar 

  • Baranyi, J., & Roberts, T. A. (1995). Mathematics of predictive food microbiology. International Journal of Food Microbiology, 26, 199–218.

    CAS  Google Scholar 

  • Bhaduri, S., Smith, P. W., Palumbo, S. A., Turner Jones, C. O., Smith, J. L., Marmer, B. S., et al. (1991). Thermal destruction of Listeria monocytogenes in liver sausage slurry. Food Microbiology, 8(1), 75–78.

    Google Scholar 

  • Black, G., & Davidson, M. (2008). Use of modelling to enhance the microbiological safety of the food system. Comprehensive Reviews in Food Science and Food Safety, 7, 159–167.

    CAS  Google Scholar 

  • Bruhn, C. M. (2007). Enhancing consumer acceptance of new processing technologies. Innovative Food and Emerging Technologies, 8, 555–558.

    Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94, 223–253.

    CAS  Google Scholar 

  • Buzrul, S. (2007). A suitable model of microbial survival curves for beer pasteurization. Lebensmittel-Wissenschaft und Technologie, 40(8), 1330–1336.

    CAS  Google Scholar 

  • Buzrul, S., Alpas, H., & Bozoglu, F. (2005). Use of Weibull frequency distribution model to describe the inactivation of Alicyclobacillus acidoterrestris by high pressure at different temperatures. Food Research International, 38, 151–157.

    Google Scholar 

  • Buzrul, S., & Alpas, S. (2004). Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: a preliminary study. FEMS Microbiology Letters, 238, 29–36.

    CAS  Google Scholar 

  • Cardello, A. V. (2003). Consumer concerns and expectations about novel food processing technologies: Effects on product liking. Appetite, 40(3), 217–233.

    Google Scholar 

  • Cardello, A. V., Schutz, H. G., & Lesher, L. L. (2007). Consumer perceptions of foods processed by innovative and emerging technologies: A conjoint analytic study. Innovative Food and Emerging Technologies, 8, 73–83.

    Google Scholar 

  • Casadei, M. A., Manas, P., Niven, G., Needs, E., & Mackey, B. M. (2002). Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Applied and Environmental Microbiology, 68(12), 5965–5972.

    CAS  Google Scholar 

  • Cassin, M. H., Paoli, G. M., & Lammerding, A. M. (1998). Simulation modeling for microbial risk assessment. Journal of Food Protection, 61(11), 1560–1566.

    CAS  Google Scholar 

  • Chen, H. (2007). Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Food Microbiology, 24(3), 197–204.

    Google Scholar 

  • Chen, H., & Hoover, D. G. (2003). Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. International Journal of Food Microbiology, 87(1–2), 161–171.

    Google Scholar 

  • Chéret, R., Delbarre-Ladrat, C., de Lamballerie-Anton, M., & Verrez-Bagnis, V. J. (2005). High-pressure effects on the proteolytic enzymes of sea bass (Dicentrarchus labrax L.) fillets. Journal of Agricultural and Food Chemistry, 53(10), 3969–3973.

    Google Scholar 

  • Chotyakul, N., Perez Lamela, C., & Torres, J. A. (2010). Effect of model parameter variability on the uncertainty of refrigerated microbial shelf-life estimates. Journal of Food Process Engineering. doi:10.1111/j.1745-4530.2010.00631.x.

    Google Scholar 

  • Chotyakul, N., Velazquez, G., & Torres, J. A. (2010). Assessment of the uncertainty in thermal food processing decisions based on microbial safety objectives. Journal of Food Engineering. doi:10.1016/j.jfoodeng.2010.08.027.

    Google Scholar 

  • Claeys, W. L., Indrawati, van Loey, A. M., & Hendrickx, M. E. (2003). Review: Are intrinsic TTIs for thermally processed milk applicable for high-pressure processing assessment? Innovative Food Science and Emerging Technologies, 4(1), 1–14.

    Google Scholar 

  • Cole, M. B., Davies, K. W., Munro, G., Holyoak, C. D., & Kilsby, D. C. (1993). A vitalistic model to describe thermal inactivation of L. monocytogenes. Journal of Industrial Microbiology, 12, 232.

    Google Scholar 

  • Collado, J., Fernandez, A., Rodrigo, M., & Martinez, A. (2006). Modelling the effect of a heat shock and germinant concentration on spore germination of a wild strain of Bacillus cereus. International Journal of Food Microbiology, 106(1), 85–89.

    CAS  Google Scholar 

  • Corbo, M. R., Bevilacqua, A., Campaniello, D., D’Amato, D., Speranza, B., & Sinigaglia, M. (2009). Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches - a review. International Journal of Food Science & Technology, 44, 223–241.

    CAS  Google Scholar 

  • Corradini, M. G., & Peleg, M. (2007). A Weibullian model for microbial injury and mortality. International Journal of Food Microbiology, 119(3), 319–328.

    Google Scholar 

  • Cruz, R. M. S., Rubilar, J. F., Ulloa, P. A., Torres, J. A., & Vieira, M. C. (2010). New food processing technologies: development and impact on the consumer acceptability. In F. Columbus (Ed.), Food quality: Control, analysis and consumer concerns, pp yy. New York, NY: Nova Science Publishers.

    Google Scholar 

  • Deliza, R., Rosenthal, A., Abadio, F. B. D., Silva, C. H. O., & Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: Benefits perceived by consumers. Journal of Food Engineering, 67, 241–246.

    Google Scholar 

  • Deliza, R., Rosenthal, A., & Silva, A. L. S. (2003). Consumer attitude towards information on non-conventional technology. Trends in Food Science and Technology, 14, 43–49.

    CAS  Google Scholar 

  • Denys, S., Ludikhuyze, L. R., van Loey, A. M., & Hendrickx, M. E. (2000). Modeling conductive heat transfer and process uniformity during batch high-pressure processing of foods. Biotechnology Progress, 16(1), 92–101.

    CAS  Google Scholar 

  • Denys, S., van Loey, A. M., & Hendrickx, M. E. (2000). A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innovative Food Science & Emerging Technologies, 1, 5–19.

    CAS  Google Scholar 

  • Dilek Avsaroglu, M., Buzrul, S., Alpas, H., Akcelik, M., & Bozoglu, F. (2006). Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure. International Journal of Food Microbiology, 108(1), 78–83.

    Google Scholar 

  • Doona, C. J., Feeherry, F. E., Ross, E. W., Corradini, M., & Peleg, M. (2007). The quasi-chemical and Weibull distribution models of nonlinear inactivation kinetics of Escherichia coli ATCC 11229 by high pressure processing. In C. J. Doona & F. E. Feeherry (Eds.), High pressure processing of foods (pp. 115–144). Ames, Iowa, USA: Blackwell Publishing.

    Google Scholar 

  • El’Yanov, B. S., & Hamann, S. D. (1975). Some quantitative relationships for ionization reactions at high pressure. Australian Journal of Chemistry, 28, 945–954.

    Google Scholar 

  • Farnaud, S., & Evans, R. W. (2003). Lactoferrin—A multifunctional protein with antimicrobial properties. Molecular Immunology, 40(7), 395–405.

    CAS  Google Scholar 

  • Farnaud, S., Spiller, C., Moriarty, L. C., Patel, A., Gant, V., Odell, E. W., et al. (2004). Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiology Letters, 233, 193–199.

    CAS  Google Scholar 

  • Fernández García, A., Collado, J., Cunha, L. M., Ocio, M. J., & Martinez, A. (2002). Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. International Journal of Food Microbiology, 77(1–2), 147–153.

    Google Scholar 

  • Floschet, F., Geeraerd, A. H., Scheerlinck, N., Nicolai, B. M., & van Impe, J. F. (2003). Monte Carlo analysis as a tool to incorporate variation on experimental data in predictive microbiology. Food Microbiology, 20, 285–295.

    Google Scholar 

  • Ganzle, M. G., Kilimann, K. V., Hartmann, C., Vogel, R., & Delgado, A. (2007). Data mining and fuzzy modelling of high pressure inactivation pathways of Lactococcus lactis. Innovative Food Science & Emerging Technologies, 8, 461–468.

    Google Scholar 

  • Grauwet, T., van der Plancken, I., Vervoort, L., Hendrickx, M. E., & van Loey, A. (2009). Investigating the potential of Bacillus subtilis a-amylase as a pressure-temperature-time indicator for high hydrostatic pressure pasteurization processes. Biotechnology Progress, 25(4), 1184–1193.

    CAS  Google Scholar 

  • Grauwet, T., van der Plancken, I., Vervoort, L., Hendrickx, M. E., & van Loey, A. (2010). Solvent engineering as a tool in enzymatic indicator development for mild high pressure pasteurization processing. Journal of Food Engineering, 97, 301–310.

    CAS  Google Scholar 

  • Guan, D., Chen, H., & Hoover, D. (2005). Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. International Journal of Food Microbiology, 104, 145–153.

    Google Scholar 

  • Halliday J (2007) Fonterra innovation takes colostrum into functional beverages. Available from: http://www.ap-foodtechnology.com/content/view/print/26182. Accessed on 6 Nov 2010.

  • Hartmann, C., & Delgado, A. (2002). Numerical simulation of convective and diffusive transport effects on a high-pressure-induced inactivation process. Biotechnology and Bioengineering, 79(1), 94–104.

    CAS  Google Scholar 

  • Hayakawa, I., Kanno, T., Tomita, M., & Fujio, Y. (1994). Application of high pressure for spore inactivation and protein denaturation. Journal of Food Science, 59, 159–163.

    CAS  Google Scholar 

  • Hembry O (2008) Fonterra health drink thrives under pressure. Available from: http://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=10521364. Accessed on: 6 Nov 2010.

  • Hendrickx, M. E., Ludikhuyze, L. R., van den Broeck, I., & Weemaes, C. A. (1998). Effects of high-pressure on enzymes related to food quality. Trends in Food Science and Technology, 9, 197–203.

    CAS  Google Scholar 

  • Hernando Saiz, A., Tarrago Mingo, S., Purroy Balda, F., & Tonello Samson, C. (2008). Advances in design for successful commercial high pressure food processing. Food Australia, 60(4), 154–156.

    Google Scholar 

  • Hite, B. H. (1899). The effects of pressure in the preservation of milk. Bulletin West Virginia University Agricultural Experiment Station, Morgantown, 58, 15–35.

    Google Scholar 

  • Hollingsworth J (2008) Retailer perspective: AMI-NMA E. coli O157:H7 surveillance and prevention briefing. American Meat Institute. http://www.meatami.com/ht/a/GetDocumentAction/i/11125. Accessed on 19 Aug 2010.

  • Hurtado, J. L., Montero, P., Borderías, A. J., & An, H. (2002). Properties of proteolytic enzymes from muscle of octopus (Octopus vulgaris) and effects of high hydrostatic pressure. Journal of Food Science, 67(7), 2555–2564.

    CAS  Google Scholar 

  • Iucci, L., Lanciotti, R., Kelly, A. L., & Huppertz, T. (2008). Plasmin activity in high-pressure-homogenised bovine milk. Milchwissenschaft, 63(1), 68–70.

    CAS  Google Scholar 

  • Juliano, P., Knoerzer, K., Fryer, P. J., & Versteeg, C. (2009). C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process. Biotechnology Progress, 25(1), 163–175.

    CAS  Google Scholar 

  • Kamau, D. N., Doores, S., & Pruitt, K. M. (1990). Antibacterial activity of the lactoperoxidase system against Listeria monocytogenes and Staphylococcus aureus in milk. Journal of Food Protection, 53(12), 1010–1014.

    CAS  Google Scholar 

  • Khurana, M., & Karwe, M. V. (2009). Numerical prediction of temperature distribution and measurement of temperature in a high hydrostatic pressure food processor. Food and Bioprocess Technology, 2, 279–290.

    Google Scholar 

  • Klotz, B., Pyle, D. L., & Mackey, B. M. (2007). New mathematical modeling approach for predicting microbial inactivation by high hydrostatic pressure. Applied and Environmental Microbiology, 73(8), 2468–2478.

    CAS  Google Scholar 

  • Koseki, S., & Yamamoto, K. (2007a). Modelling the bacterial survival/death interface induced by high pressure processing. International Journal of Food Microbiology, 116(1), 136–143.

    CAS  Google Scholar 

  • Koseki, S., & Yamamoto, K. (2007b). A novel approach to predicting microbial inactivation kinetics during high pressure processing. International Journal of Food Microbiology, 116(2), 275–282.

    CAS  Google Scholar 

  • Kouassi, G. K., Anantheswaran, R. C., Knabel, S. J., & Floros, J. D. (2007). Effect of high-pressure processing on activity and structure of alkaline phosphatase and lactate dehydrogenase in buffer and milk. Journal of Agricultural and Food Chemistry, 55, 9520–9529.

    CAS  Google Scholar 

  • Lado, B. H., & Yousef, A. E. (2002). Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection, 4, 433–440.

    Google Scholar 

  • Lakshmanan, R., Patterson, M. F., & Piggott, J. R. (2005). Effects of high-pressure processing on proteolytic enzymes and proteins in cold-smoked salmon during refrigerated storage. Food Chemistry, 90, 541–548.

    CAS  Google Scholar 

  • Linton, R. H., Carter, W. H., Pierson, M. D., & Hackney, C. R. (1995). Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. Journal of Food Protection, 58(9), 946–954.

    Google Scholar 

  • Linton, R. H., Carter, W. H., Pierson, M. D., Hackney, C. R., & Eifert, J. D. (1996). Use of a modified Gompertz equation to predict the effects of temperature, pH, and NaCl on the inactivation of Listeria monocytogenes Scott A heated in infant formula. Journal of Food Protection, 59(1), 16–23.

    Google Scholar 

  • Little, C. L., Adams, M. R., Anderson, W. A., & Cole, M. B. (1994). Application of a log-logistic model to describe the survival of Yersinia enterocolitica at sub-optimal pH and temperature. International Journal of Food Microbiology, 22(1), 63–71.

    CAS  Google Scholar 

  • Lopez-Malo, A., Palou, E., Barbosa-Cánovas, G. V., Welti-Chanes, J., & Swanson, B. G. (1999). Polyphenoloxidase activity and color changes during storage of high hydrostatic pressure treated avocado puree. Food Research International, 31(8), 549–556.

    Google Scholar 

  • Ludikhuyze L, van den Broeck I, Indrawati & Hendrickx ME (2002) High pressure processing of fruits and vegetables. In: Jongen W (ed) Fruits and vegetable processing: improving quality. CRC Press Inc.: New York, NY.

  • Mafart, P., Couvert, O., Gaillard, S., & Leguerinel, I. (2002). On calculating sterility in thermal preservation methods: Application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72(1–2), 107–113.

    CAS  Google Scholar 

  • Margosch, D., Ehrmann, M. A., Buckow, R., Heinz, V., Vogel, R. F., & Ganzle, G. (2006a). High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology, 72(5), 3476–3481.

    CAS  Google Scholar 

  • Margosch, D., Ehrmann, M. A., Buckow, R., Heinz, V., Vogel, R. F., & Gänzle, M. G. (2006b). High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environment Microbiology, 72(5), 3476–3481.

    CAS  Google Scholar 

  • Margosch, D., Ehrmann, M. A., Gaenzle, M. G., & Vogel, R. F. (2004). Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. Journal of Food Protection, 67(11), 2530–2537.

    Google Scholar 

  • Martínez Monteagudo SI, Leal Dávila M, Saldaña MDA, Torres JA & Welti Chanes J (2011) Nuevas tecnologías para la industria de alimentos en México utilizando la alta presión hidrostática. Industria Alimentaria, 32 (in press).

  • Mathys, A., Kallmeyer, R., Heinz, V., & Knorr, D. (2008). Impact of dissociation equilibrium shift on bacterial spore inactivation by heat and pressure. Food Control, 19(12), 1165–1173.

    CAS  Google Scholar 

  • McCarty R (2008) Consumer perceptions of beef safety and E. coli O157:H7. American Meat Institute. http://www.meatami.com/index.php?display=GeneralSearch&action=AddSearchTermAction&searchstring=mccarty. Accessed on 19 Aug 2010.

  • McMeekin, T. A., Olley, J. N., Ross, T., & Ratkowsky, D. A. (1993). Predictive microbiology: Theory and application. LTD, Somerset, England: Research Studies Press.

    Google Scholar 

  • Mills, G., Earnshaw, R., & Patterson, M. F. (1998). Effect of high hydrostatic pressure on Clostridium sporogenes spores. Letters in Applied Microbiology, 26, 227–230.

    CAS  Google Scholar 

  • Mishra, H. N., & Sinija, V. R. (2008). Food technology to meet the changing needs of urban consumers. Comprehensive Reviews in Food Science and Food Safety, 7, 358–368.

    Google Scholar 

  • Moermann, F. (2005). High hydrostatic pressure inactivation of vegetative microorganisms, aerobic and anaerobic spores in pork Marengo, a low acidic particulate food product. Meat Science, 69, 225–232.

    Google Scholar 

  • Morales-Blancas EF & Torres JA (2003a) Activation energy in thermal process calculations. Encyclopedia of Agricultural, Food, and Biological Engineering. Marcel Dekker, Inc: New York. pp 1–4.

  • Morales-Blancas EF & Torres JA (2003b) Thermal resistance constant. Encyclopedia of Agricultural, Food, and Biological Engineering. Marcel Dekker, Inc: New York. pp 1030–1037.

  • Morales-Blancas EF & Torres JA (2003c) Thermal resistance parameters, determination of. Encyclopedia of Agricultural, Food, and Biological Engineering. Marcel Dekker, Inc: New York. pp 1038–1043.

  • Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1996). High-pressure effects on protein structure and function. Proteins: Structure, Function, and Genetics, 24, 81–91.

    CAS  Google Scholar 

  • Mozhaev, V. V., Lange, R., Kudryashova, E. V., & Balny, C. (1996). Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and Bioengineering, 52, 320–331.

    CAS  Google Scholar 

  • Naim, F., Zareifard, M. R., Zhu, S., Huizing, R. H., Grabowski, S., & Marcotte, M. (2008). Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation. Food Microbiology, 25(7), 936–941.

    CAS  Google Scholar 

  • Nakayama, A., Yano, Y., Kobayashi, S., Ishikawa, M., & Sakai, K. (1996). Comparison of pressure resistances of spores of six Bacillus strains with their heat resistance. Applied and Environmental Microbiology, 62, 3897–3900.

    CAS  Google Scholar 

  • Neuman, R. C., Kauzmann, W., & Zipp, A. (1973). Pressure dependence of weak acid ionization in aqueous buffers. The Journal of Physical Chemistry, 77(22), 2687–2691.

    CAS  Google Scholar 

  • Nielsen, H. B., Sonne, A., Grunert, K., Banati, D., Pollák-Tóth, A., Lakner, Z., et al. (2009). Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production. Appetite, 52, 115–126.

    Google Scholar 

  • Norton, T., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technology, 1(1), 2–34.

    Google Scholar 

  • Otero, L., Molina-García, A. D., & Sanz, P. D. (2002). Some interrelated thermophysical properties of liquid water and ice I: A user-friendly modelling review for high-pressure processing (www.if.csic.es/programs/ifiform.htm). Critical Reviews in Food Science and Nutrition, 42, 339–352.

    Google Scholar 

  • Otero, L., Ousegui, A., Guignon, B., le Bail, A., & Sanz, P. D. (2006). Evaluation of the thermophysical properties of tylose gel under pressure in the phase change domain. Food Hydrocolloids, 20(4), 449–460.

    CAS  Google Scholar 

  • Otero, L., Ramos, A. M., de Elvira, C., & Sanz, P. D. (2007). A model to design high-pressure processes towards a uniform temperature distribution. Journal of Food Engineering, 78, 1463–1470.

    Google Scholar 

  • Otero, L., & Sanz, P. D. (2003). Modelling heat transfer in high pressure food processing: A review. Innovative Food Science & Emerging Technologies, 4, 121–134.

    Google Scholar 

  • Palou, E., Hernandez-Salgado, C., Lopez-Malo, A., Barbosa-Cánovas, G. V., Swanson, B. G., & Welti, J. (2000). High pressure-processed guacamole. Innovative Food Science & Emerging Technologies, 1, 69–75.

    Google Scholar 

  • Palou, E., Lopez-Malo, A., Barbosa-Cánovas, G. V., Welti-Chanes, J., & Swanson, B. G. (1999). Polyphenoloxidase activity and color of blanched and high hydrostatic pressure treated banana purée. Journal of Food Science, 64, 42–45.

    CAS  Google Scholar 

  • Panagou, E. Z., Tassou, C. C., Manitsa, C., & Mallidis, C. (2007). Modelling the effect of high pressure on the inactivation kinetics of a pressure-resistant strain of Pediococcus damnosus in phosphate buffer and gilt-head seabream (Sparus aurata). Journal of Applied Microbiology, 102(6), 1499–1507.

    CAS  Google Scholar 

  • Paredes-Sabja, D., Gonzalez, M., Sarker, M. R., & Torres, J. A. (2007). Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions. Journal of Food Science, 72(6), M202–M206.

    CAS  Google Scholar 

  • Paredes-Sabja, D., Sarker, N., Setlow, B., Setlow, P., & Sarker, M. R. (2008). Roles of DacB and Spm proteins in Clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation. Applied and Environmental Microbiology, 74(12), 3730–3738.

    CAS  Google Scholar 

  • Paredes-Sabja, D., Setlow, B., Setlow, P., & Sarker, M. R. (2008). Characterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid. Journal of Bacteriology, 190(13), 4648–4659.

    CAS  Google Scholar 

  • Paredes-Sabja, D., & Torres, J. A. (2010). Modeling of the germination of spores from Clostridium perfringens food poisoning isolates. Journal of Food Process Engineering, 33, 150–167.

    Google Scholar 

  • Paredes-Sabja, D., Torres, J. A., Setlow, P., & Sarker, M. R. (2008). Clostridium perfringens spore germination: characterization of germinants and their receptors. Journal of Bacteriology, 190(4), 1190–1201.

    CAS  Google Scholar 

  • Patterson, M. F., & Kilpatrick, D. J. (1998). The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. Journal of Food Protection, 61(4), 432–436.

    CAS  Google Scholar 

  • Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science and Nutrition, 38(5), 353–380.

    CAS  Google Scholar 

  • Peleg, M., Engel, R., Gonzalez Martinez, C., & Corradini, M. G. (2002). Non-Arrhenius and non-WLF kinetics in food systems. Journal of the Science of Food and Agriculture, 82(12), 1346–1355.

    CAS  Google Scholar 

  • Pérez Lamela, C., & Torres, J. A. (2008a). Pressure-assisted thermal processing: A promising future for high flavour quality and health-enhancing foods—Part 1. AgroFOOD Industry Hi-tech, 19(3), 60–62.

    Google Scholar 

  • Pérez Lamela, C., & Torres, J. A. (2008b). Pressure processing of foods: Microbial inactivation and chemical changes in pressure-assisted thermal processing (PATP)-part 2. AgroFOOD Industry Hi-tech, 19(4), 34–36.

    Google Scholar 

  • Pina Perez, M. C., Rodrigo Aliaga, D., Saucedo Reyes, D., & Martinez Lopez, A. (2007). Pressure inactivation kinetics of Enterobacter sakazakii in infant formula milk. Journal of Food Protection, 70(10), 2281–2289.

    CAS  Google Scholar 

  • Rademacher, B., & Hinrichs, J. (2006). Effects of high pressure treatment on indigenous enzymes in bovine milk: Reaction kinetics, inactivation and potential application. International Dairy Journal, 16(6), 655–661.

    CAS  Google Scholar 

  • Raghubeer EV (2007) The effects of high hydrostatic pressure on meats. In: White Paper, Avure Technologies, Inc., Kent, WA.

  • Rajan, S., Ahn, J., Balasubramanian, V. M., & Yousef, A. E. (2006). Combined pressure–thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. Journal of Food Protection, 69, 853–860.

    CAS  Google Scholar 

  • Raju, D., & Sarker, M. R. (2005). Comparison of the heat sensitivities of vegetative cells and spores of wild-type, cpe knock-out and cpe plasmid-cured Clostridium perfringens. Applied and Environmental Microbiology, 71, 7618–7620.

    CAS  Google Scholar 

  • Raju, D., Waters, M., Setlow, P., & Sarker, M. R. (2006). Investigating the role of small, acid-soluble spore proteins (SASPs) in the resistance of Clostridium perfringens spores to heat. BMC Microbiology, 6, 50.

    Google Scholar 

  • Ramirez, R., Saraiva, J. A., Perez Lamela, C., & Torres, J. A. (2009). Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing, PATP. Food Engineering Reviews, 1(1), 16–30.

    CAS  Google Scholar 

  • Ramírez, R., & Torres, J. A. (2009). Chemical and quality changes when seeking fuller utilization of seafood resources by pressure processing technologies. Fish Processing byproducts. A Sustainable Future. Fairbanks, AK: Alaska Sea Grant, University of Alaska, 189–206.

    Google Scholar 

  • Ratphitagsanti, W., Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2009). Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressure-assisted thermal processing. Journal of Food Protection, 72(4), 775–782.

    Google Scholar 

  • Reddy, N. R., Solomon, H. M., Tetzloff, R. C., & Rhodehamel, E. J. (2003). Inactivation of Clostridium botulinum type A spores by high-pressure processing at elevated temperature. Journal of Food Protection, 66, 1402–1407.

    CAS  Google Scholar 

  • Reyns, K. M. F. A., Soontjens, C. C. F., Cornelis, K., Weemaes, C. A., Hendrickx, M. E., & Michiels, C. W. (2000). Kinetic analysis and modelling of combined high-pressure-temperature inactivation of the yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 56(2/3), 199–210.

    CAS  Google Scholar 

  • Rode, L. J., & Foster, J. W. (1962). Ionic germination of spores of Bacillus megaterium QM B 1551. Archiv für Mikrobiologie, 43, 183–200.

    CAS  Google Scholar 

  • Rubio, B., Martinez, B., Garcia-Cachan, M. D., Rovira, J., & Jaime, I. (2010). The effects of HPP treatment on Listeria monocytogenes inoculated in dry-cured meat products. Fleischwirtschaft, 90(4), 188–192.

    Google Scholar 

  • San Martin-Gonzalez, M. F., Welti-Chanes, J., & Barbosa-Canovas, G. V. (2006). Cheese manufacture assisted by high pressure. Food Reviews International, 22(3), 275–289.

    CAS  Google Scholar 

  • San Martin, M. F., Barbosa-Cánovas, G. V., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 42(6), 627–645.

    CAS  Google Scholar 

  • Sarker, M. R., Shivers, R. P., Sparks, S. G., Juneja, V. K., & McClane, B. A. (2000). Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Applied and Environmental Microbiology, 66, 3234–3240.

    CAS  Google Scholar 

  • Schmidheiny K (2008) Monte Carlo experiments. In Short Guides to Microeconometrics, Universitat Pompeu Fabra, Barcelona, Spain. http://kurt.schmidheiny.name/teaching/montecarlo2up.pdf. Accessed on 15 Nov 2009.

  • Shimada, S., Andou, M., Naito, N., Yamada, N., Osumi, M., & Hayashi, R. (1993). Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 40, 123–131.

    CAS  Google Scholar 

  • Smelt, J. P. P. M., Hellemons, J. C., Wouters, P. C., & van Gerwen, S. J. C. (2002). Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means. International Journal of Food Microbiology, 78, 57–77.

    Google Scholar 

  • Stewart, C. M., Dunne, C. P., Sikes, A., & Hoover, D. G. (2000). Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters. Innovative Food Science & Emerging Technologies, 1(1), 49–56.

    CAS  Google Scholar 

  • Tanzi, E., Saccani, G., Barbuti, S., Grisenti, M. S., Lori, D., Bolzoni, S., et al. (2004). High pressure treatment of raw ham, sanitation and impact on quality. Industria Conserve, 79(1), 37–50.

    Google Scholar 

  • Torres, J. A., Chotyakul, N., Velazquez, G., Saraiva, J. A., & Perez Lamela, C. (2010). Integration of statistics and food process engineering: Assessing the uncertainty of thermal processing and shelf-life estimations. Logroño, La Rioja, España: VI Congreso Español de Ingeniería de Alimentos.

    Google Scholar 

  • Torres, J. A., & Rios, R. A. (2006). Alta presión hidrostática: Una tecnología que irrumpirá en Chile (pp. 40–43). Febrero: Agro Economico.

    Google Scholar 

  • Torres, J. A., Sanz, P. D., Otero, L., Pérez Lamela, C., & Saldaña, M. D. A. (2009a). Engineering principles to improve food quality and safety by high pressure processing. In E. Ortega-Rivas (Ed.), Processing effects on safety and quality of foods (pp. 379–414). Boca Raton, FL: CRC Taylor & Francis, Inc.

    Google Scholar 

  • Torres, J. A., Sanz, P. D., Otero, L., Pérez Lamela, C., & Saldaña, M. D. A. (2009b). Temperature distribution and chemical reactions in foods treated by pressure-assisted thermal processing. In E. Ortega-Rivas (Ed.), Processing effects on safety and quality of foods (pp. 415–440). Boca Raton, FL: CRC Taylor & Francis, Inc.

    Google Scholar 

  • Torres, J. A., & Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1–2), 95–112.

    Google Scholar 

  • Torres, J. A., & Velazquez, G. (2008). Hydrostatic pressure processing of foods. In S. Jun & J. Irudayaraj (Eds.), Food processing operations modeling: design and analysis (pp. 173–212). Boca Ratón, FL: CRC Press Inc.

    Google Scholar 

  • Ulloa-Fuentes, P. A., Galotto, M. J., & Torres, J. A. (2008a). Procesos térmicos asistidos por presión (PTAP), el futuro de una nueva tecnología ya instalada en México - Part II. Industria Alimentaria (México), 30(3), 19–23.

    Google Scholar 

  • Ulloa-Fuentes PA, Galotto MJ & Torres JA (2008b) Procesos térmicos asistidos por presión (PTAP), el futuro de una nueva tecnología ya instalada en México—Parte I. Industria Alimentaria (México), 30(2), 20, 22, 24, 26, 28, 29.

  • Valdez-Fragoso, A., Mújica-Paz, H., Welti-Chanes, J., & Torres, J. A. (2010). Reaction kinetics at high pressure and temperature: effects on milk flavor volatiles and on chemical compounds with nutritional and safety importance in several foods. Food and Bioprocess Technology. doi:10.1007/s11947-010-0489-z.

    Google Scholar 

  • van Boekel, M. A. J. S. (2008). Kinetic modeling of food quality: A critical review. Comprehensive Reviews in Food Science and Food Safety, 7, 144–158.

    Google Scholar 

  • van der Plancken, I., Grauwet, T., Oey, I., van Loey, A., & Hendrickx, M. (2008). Impact evaluation of high pressure treatment on foods: Considerations on the development of pressuretemperature-time integrators (pTTIs). Trends in Food Science and Technology, 19, 337–348.

    Google Scholar 

  • Vary, J. C., & Halvorson, H. O. (1965). Kinetics of germination of Bacillus spores. Journal of Bacteriology, 89, 1340–1347.

    CAS  Google Scholar 

  • Velazquez, G., Gandhi, K., & Torres, J. A. (2002). High hydrostatic pressure: A review. Biotam, 12(2), 71–78.

    Google Scholar 

  • Velazquez, G., Vazquez, P. A., Vazquez, M., & Torres, J. A. (2005a). Aplicaciones del procesado de alimentos por alta presión. Ciencia y Tecnologia Alimentaria, 4(5), 343–352.

    Google Scholar 

  • Velazquez, G., Vazquez, P. A., Vazquez, M., & Torres, J. A. (2005b). Avances en el procesado de alimentos por alta presión. Ciencia y Tecnologia Alimentaria, 4(5), 353–367.

    Google Scholar 

  • Verlent, I., van Loey, A., Smout, C., Duvetter, T., & Hendrickx, M. E. (2004). Purified tomato polygalacturonase activity during thermal and high-pressure treatment. Biotechnology and Bioengineering, 86(1), 63–71.

    CAS  Google Scholar 

  • Welti-Chanes, J., Ochoa-Velasco, C. E., & Guerrero-Beltran, J. A. (2009). High-pressure homogenization of orange juice to inactivate pectinmethylesterase. Innovative Food Science & Emerging Technologies, 10(4), 457–462.

    CAS  Google Scholar 

  • Wittwer J (2004) Monte Carlo simulation in Excel. In Vertex42, the guide to Excel. Available fro: www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html. Accessed on: 15 Nov 2009.

  • Wright, A. O., Cardello, A. V., & Bell, R. (2007). Consumer evaluations of high pressure processed foods. In C. J. Doona & F. E. Feeherry (Eds.), High pressure processing of foods (pp. 219–226). Ames, IA: Blackwell Publishing.

    Google Scholar 

  • Xiong, R., Xie, G., Edmondson, A. E., & Sheard, M. A. (1999). A mathematical model for bacterial inactivation. International Journal of Food Microbiology, 46, 45–55.

    CAS  Google Scholar 

  • Xiong, R., Xie, G., Edmondson, A. S., Linton, R. H., & Sheard, M. A. (1999). Comparison of the Baranyi model with the modified Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A. Food Microbiology, 16(3), 269–279.

    Google Scholar 

  • Zhu, S., Naim, F., Marcotte, M., Ramaswamy, H., & Shao, Y. (2008). High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperature. International Journal of Food Microbiology, 126(1–2), 86–92.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antonio Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mújica-Paz, H., Valdez-Fragoso, A., Samson, C.T. et al. High-Pressure Processing Technologies for the Pasteurization and Sterilization of Foods. Food Bioprocess Technol 4, 969–985 (2011). https://doi.org/10.1007/s11947-011-0543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0543-5

Keywords

Navigation