Skip to main content
Log in

Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural networks

ANOVA:

Analysis of variance

AOTF:

Acousto-optic tunable filters

BMP:

Bitmap image format

BSQ:

Band sequential

CCD:

Charge-coupled device

FLD:

Fisher’s linear discriminant

FWHM:

Full width at half-maximum

GALDA:

Genetic algorithm based on LDA

LCTF:

Liquid crystal tunable filters

LD:

Lorentzian distribution

LDA:

Linear discriminant analysis

MC:

Moisture content

MD:

Mahalanobis distance

NIR:

Near infrared

PCA:

Principal component analysis

PLS:

Partial least square

PLSDA:

PLS discriminant analysis

PLSR:

PLS regression

RF:

Radiofrequency

RGB:

Red, green, blue colour space

RGBI:

Red, green, blue, infrared

SAM:

Spectral angle mapper

SID:

Spectral information divergence

SSC:

Soluble solids content

TA:

Titratable acid

TIFF:

Tagged image file format

UV:

Ultraviolet

References

  • Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137.

    Article  Google Scholar 

  • Al-Mallahi, A., Kataoka, T., & Okamoto, H. (2008). Discrimination between potato tubers and clods by detecting the significant wavebands. Biosystems Engineering, 100(3), 329–337.

    Article  Google Scholar 

  • Ariana, D. P., & Lu, R. (2010a). Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Computers and Electronics in Agriculture, 74(1), 137–144.

    Article  Google Scholar 

  • Ariana, D. P., & Lu, R. (2010b). Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. Journal of Food Engineering, 96(4), 583–590.

    Article  Google Scholar 

  • Ariana, D. P., Guyer, D. E., & Shrestha, B. (2006). Integrating multispectral reflectance and fluorescence imaging for defect detection on apples. Computers and Electronics in Agriculture, 50, 148–161.

    Article  Google Scholar 

  • Bei, L., Dennis, G. I., Miller, H. M., Spaine, T. W., & Carnahan, J. W. (2004). Acousto-optic tunable filters: Fundamentals and applications as applied to chemical analysis techniques. Progress in Quantum Electronics, 28(2), 67–87.

    Article  Google Scholar 

  • Bennedsen, B. S., & Peterson, D. L. (2005). Performance of a system for apple surface defect identification in near-infrared images. Biosystems Engineering, 90(4), 419–431.

    Article  Google Scholar 

  • Bennedsen, B. S., Peterson, D. L., & Tabb, A. (2007). Identifying apple surface defects using principal components analysis and artificial neural networks. Transactions of the ASABE, 50(6), 2257–2265.

    Google Scholar 

  • Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384–393.

    Article  Google Scholar 

  • Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103, 137–145.

    Article  Google Scholar 

  • Cayuela, J. A., García-Martos, J. M., & Caliani, N. (2009). NIR prediction of fruit moisture, free acidity and oil content in intact olives. Grasas y Aceites, 60(2), 194–202.

    Article  CAS  Google Scholar 

  • Chang, C. (1976). Acousto-optic devices and applications. IEEE Transactions on Sonics Ultrasound, 23(1), 2–22.

    Article  Google Scholar 

  • Chang, C. (2003). Hyperspectral imaging: Techniques for spectral detection and classification. New York: Springer.

    Google Scholar 

  • Cheng, X., Chen, Y., Tao, Y., Wang, C., Kim, M. S., & Lefcourt, A. (2004). A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Transactions of ASAE, 47(4), 1313–1320.

    Google Scholar 

  • Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D.-W., & Menesatti, P. (2011). Shape analysis of agricultural products: A review of recent research advances and potential application to computer vision. Food and Bioprocess Technology, 4, 673–692.

    Article  Google Scholar 

  • Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.

    Article  Google Scholar 

  • Du, C.-J., & Sun, D.-W. (2006). Learning techniques used in computer vision for food quality evaluation: a review. Journal of Food Engineering, 72, 39–55.

    Google Scholar 

  • Du, C.-J., & Sun, D.-W. (2009). Retrospective shading correlation of confocal laser scanning microscopy beef images for three-dimensional visualization. Food and Bioprocess Technology, 2, 167–176.

    Article  Google Scholar 

  • Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with neural networks—A review. Pattern Recognition, 35(10), 2279–2301.

    Article  Google Scholar 

  • ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81, 98–107.

    Article  CAS  Google Scholar 

  • ElMasry, G., Nassar, A., Wang, N., & Vigneault, C. (2008a). Spectral methods for measuring quality changes of fresh fruits and vegetables. Stewart Postharvest Review, 4, 1–13.

    Article  Google Scholar 

  • ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008b). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT, 41, 337–345.

    Article  CAS  Google Scholar 

  • ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52, 1–8.

    Article  Google Scholar 

  • Erives, H., & Fitzgerald, G. J. (2005). Automated registration of hyperspectral images for precision agriculture. Computers and Electronics in Agriculture, 47(2), 103–119.

    Article  Google Scholar 

  • Farrera-Rebollo, R. R., Salgado-Cruz, M. P., Chanona-Pérez, J., Gutiérrez-López, G. F., Alamilla-Beltrán, L., & Calderón-Domínguez, G. (2011). Evaluation of image analysis tools for characterization of sweet bread crumb structure. Food and Bioprocess Technology. doi:10.1007/s11947-011-0513-y.

  • Fernandes, A. M., Oliveira, P., Moura, J. P., Oliveira, A. A., Falco, V., Correia, M. J., et al. (2011). Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks. Journal of Food Engineering, 105(2), 216–226.

    Article  CAS  Google Scholar 

  • Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.

    Article  Google Scholar 

  • Geladi, P. L. M. (2007). Calibration standards and image calibration. In H. F. Grahn & P. Geladi (Eds.), Techniques and applications of hyperspectral image analysis (pp. 203–220). Chichester: Wiley.

    Chapter  Google Scholar 

  • Gómez-Sanchis, J., Camps-Valls, G., Moltó, E., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008a). Segmentation of hyperspectral images for the detection of rotten mandarins. Lecture Notes in Computer Science, 5112, 1071–1080.

    Article  Google Scholar 

  • Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008b). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.

    Article  Google Scholar 

  • Gómez-Sanchis, J., Moltó, E., Camps-Valls, G., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008c). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. Journal of Food Engineering, 85(2), 191–200.

    Article  Google Scholar 

  • Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785.

    Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Gowen, A. A., O’Donnell, C. P., Cullen, P. J., Downey, G., & Frias, J. M. (2007). Hyperspectral imaging—An emerging process analytical tool. Trends in Food Science & Technology, 18(12), 590–598.

    Article  CAS  Google Scholar 

  • Gowen, A. A., O’Donnell, C. P., Taghizadeh, M., Cullen, P. J., Frias, J. M., & Downey, G. (2008). Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus). Journal of Chemometrics, 22(3–4), 259–267.

    Article  CAS  Google Scholar 

  • Gowen, A. A., Taghizadeh, M., & O’Donnell, C. P. (2009a). Identification of mushrooms subjected to freeze damage using hyperspectral imaging. Journal of Food Engineering, 93, 7–12.

    Article  Google Scholar 

  • Gowen, A. A., Tsenkova, R., Esquerre, C., Downey, G., & O’Donnell, P. D. (2009b). Use of near infrared hyperspectral imaging to identify water matrix co-ordinates in mushrooms (Agaricus bisporus) subjected to mechanical vibration. Journal of Near Infrared Spectroscopy, 17(6), 363–371.

    Article  CAS  Google Scholar 

  • Grahn, H. F., & Geladi, P. (2007). Techniques and applications of hyperspectral image analysis. Chichester: Wiley.

    Book  Google Scholar 

  • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

    Google Scholar 

  • Hetch, E. (2001). Optics (4th ed.). Reading: Addison Wesley.

    Google Scholar 

  • Huang, Y., Kangas, L. J., & Rasco, B. A. (2007). Applications of artificial neural networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition, 47(2), 113–126.

    Article  CAS  Google Scholar 

  • Jiménez, A., Beltrán, G., Aguilera, M. P., & Uceda, M. (2008). A sensor-software based on artificial neural network for the optimization of olive oil elaboration process. Sensors and Actuators B, 129, 985–990.

    Article  CAS  Google Scholar 

  • Jobson, J. D. (1992). Applied multivariate data analysis: Categorical and multivariate methods, vol. Berlin: Springer.

    Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Kalkan, H., Beriat, P., Yardimci, Y., & Pearson, T. C. (2011). Detection of contaminated hazelnuts and ground red chili pepper flakes by multispectral imaging. Computers and Electronics in Agriculture, 77(1), 28–34.

    Article  Google Scholar 

  • Karimi, Y., Maftoonazad, N., Ramaswamy, H. S., Prasher, S. O., & Marcotte, M. (2009). Application of hyperspectral technique for color classification avocados subjected to different treatments. Food and Bioprocess Technology. doi:10.1007/s11947-009-0292-x.

  • Kays, S. J. (1999). Preharvest factors affecting appearance. Postharvest Biology and Technology, 15, 233–247.

    Article  Google Scholar 

  • Kim, M. S., Chen, Y. R., & Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of ASAE, 44(3), 721–729.

    Google Scholar 

  • Kleynen, O., Leemans, V., & Destain, M. F. (2005). Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering, 69, 41–49.

    Article  Google Scholar 

  • Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. New York: Springer.

    Book  Google Scholar 

  • Lefcout, A. M., Kim, M. S., Chen, Y.-R., & Kang, B. (2006). Systematic approach for using hyperspectral imaging data to develop multispectral imagining systems: Detection of feces on apples. Computers and Electronics in Agriculture, 54, 22–35.

    Article  Google Scholar 

  • Li, J., Rao, X., & Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 78(1), 38–48.

    Article  Google Scholar 

  • Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E., & Kim, M. S. (2005). Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Applied Spectroscopy, 59(1), 78–85.

    Google Scholar 

  • Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E., & Kim, M. S. (2006). Development of hyperspectral imaging technique for the detection of chilling injury in cucumbers: Spectral and image analysis. Applied Engineering in Agriculture, 22(1), 101–111.

    Google Scholar 

  • Lleó, L., Barreiro, P., Ruiz-Altisent, M., & Herrero, A. (2009). Multispectral images of peach related to firmness and maturity at harvest. Journal of Food Engineering, 93(2), 229–235.

    Article  Google Scholar 

  • Lleó, L., Roger, J. M., Herrero-Langreo, A., Diezma-Iglesias, B., & Barreiro, P. (2011). Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. Journal of Food Engineering, 104(4), 612–620.

    Article  Google Scholar 

  • Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2011). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology. doi:10.1007/s11947-011-0737-x.

  • Lu, R. (2003). Detection of bruises on apples using near-infrared hyperspectral imaging. Transactions of the ASAE, 46, 523–530.

    Google Scholar 

  • Lu, R., & Peng, Y. (2006). Hyperspectral scattering for assessing peach fruit firmness. Biosystems Engineering, 93(2), 161–171.

    Article  Google Scholar 

  • Lunadei, L., Diezma, B., Lleó, L., Ruiz-Garcia, L., Cantalapiedra, S., & Ruiz-Altisent, M. (2012). Monitoring of fresh-cut spinach leaves through a multispectral vision system. Postharvest Biology and Technology, 63, 74–84.

    Article  Google Scholar 

  • Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2011). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—A review. Food and Bioprocess Technology. doi:10.1007/s11947-011-0697-1.

  • Manickavasagan, A., Jayas, D. S., White, N. D. G., & Paliwal, J. (2010). Wheat class identification using thermal imaging. Food and Bioprocess Technology, 3(3), 450–460.

    Article  Google Scholar 

  • Martinez, A. M., & Kak, A. C. (2004). PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228–233.

    Article  Google Scholar 

  • Martínez-Usó, A., Pla, F., & García-Sevilla, P. (2005). Multispectral iSegmentation by energy minimization for fruit quality estimation. In: Pattern Recognition and Image Analysis: Second Iberian Conference (IbPRIA 2005), Estoril, Portugal, June 7–9, 2005. LNCS, 3523, 689–696.

  • Mather, P. M. (1998). Computer processing of remotely sensed images. Chichester: Wiley.

    Google Scholar 

  • McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition. New Jersey: Wiley-Interscience.

    Google Scholar 

  • Mehl, P. M., Chen, Y. R., Kim, M. S., & Chan, D. E. (2004). Development of hyperspectral imaging technique for detection of apple surface defects and contaminations. Journal of Food Engineering, 61, 67–81.

    Article  Google Scholar 

  • Mendoza, F., Lu, R., Ariana, D., Cen, H., & Bailey, B. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160.

    Google Scholar 

  • Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2, 308–314.

    Article  CAS  Google Scholar 

  • Nguyen Do Trong, N., Tsuta, M., Nicolaï, B. M., De Baerdemaeker, J., & Saeys, W. (2011). Prediction of optimal cooking time for boiled potatoes by hyperspectral imaging. Journal of Food Engineering, 105(4), 617–624.

    Article  Google Scholar 

  • Nicolaï, B. M., Lötze, E., Peirs, A., Scheerlinck, N., & Theron, K. I. (2006). Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology, 40, 1–6.

    Article  Google Scholar 

  • Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., et al. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99–118.

    Article  Google Scholar 

  • Noh, H. K., & Lu, R. (2007). Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology, 43, 193–201.

    Article  Google Scholar 

  • Noh, H., Peng, Y., & Lu, R. (2007). Integration of hyperspectral reflectance and fluorescence imaging for assessing apple maturity. Transactions of the ASABE, 50(3), 963–971.

    Google Scholar 

  • Ozaki, Y., McClure, W. F., & Christy, A. A. (Eds.). (2006). Near-infrared spectroscopy in food science and technology. New Jersey: Wiley-Interscience.

    Google Scholar 

  • Paulus, I., De Busscher, R., & Schrevens, E. (1997). Use of image analysis to investigate human quality classification of apples. Journal of Agricultural Engineering Research, 68, 341–353.

    Article  Google Scholar 

  • Peirs, A., Scheerlinck, N., De Baerdemaeker, J., & Nicolaï, B. M. (2003). Starch index determination of apple fruit by means of a hyperspectral near infrared reflectance imaging system. Journal of near infrared spectroscopy, 11(5), 379–389.

    Article  CAS  Google Scholar 

  • Peng, Y., & Lu, R. (2005). Modeling multispectral scattering profiles for prediction of apple fruit firmness. Transactions of ASAE, 48(1), 235–242.

    Google Scholar 

  • Peng, Y., & Lu, R. (2006). An LCTF-based multispectral imaging system for estimation of apple fruit firmness: Part I. Acquisition and characterization of scattering images. Transactions of ASAE, 49(1), 259–267.

    Google Scholar 

  • Peng, Y., & Lu, R. (2008). Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 48, 52–56.

    Article  Google Scholar 

  • Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(1), S110–S122.

    Article  Google Scholar 

  • Polder, G., van der Heijden, G. W. A. M., & Young, I. T. (2002). Spectral image analysis for measuring ripeness of tomatoes. Transactions of ASAE, 45, 1155–1161.

    Google Scholar 

  • Polder, G., van der Heijden, G. W. A. M., & Young, I. T. (2003). Tomato sorting using independent component analysis on spectral images. Real-Time Imaging, 9, 253–259.

    Article  Google Scholar 

  • Polder, G., van der Heijden, G. W. A. M., van der Voet, H., & Young, I. T. (2004). Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biology and Technology, 34, 117–129.

    Article  CAS  Google Scholar 

  • Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107, 1–23.

    Article  CAS  Google Scholar 

  • Qin, J., & Lu, R. (2005). Detection of pits in tart cherries by hyperspectral transmission imaging. Transactions of ASAE, 48(5), 1963–1970.

    Google Scholar 

  • Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191.

    Article  Google Scholar 

  • Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108(1), 87–93.

    Article  Google Scholar 

  • Quevedo, R., & Aguilera. (2010). Color computer vision and stereoscopy for estimating firmness in the salmon (Salmon salar) fillets. Food and Bioprocess Technology, 3(4), 561–567.

    Article  Google Scholar 

  • Quevedo, R., Aguilera, J. M., & Pedreschi, F. (2010). Color of salmon fillets by computer vision and sensory panel. Food and Bioprocess Technology, 3(5), 637–643.

    Article  Google Scholar 

  • Rajkumar, P., Wang, N., EImasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200.

    Article  Google Scholar 

  • Russ, J. C. (2011). The image processing handbook (6th ed.). Boca Raton: CRC.

    Google Scholar 

  • Shaw, P. J. A. (2003). Multivariate statistics for the environmental sciences. New York: Hodder-Arnold.

    Google Scholar 

  • Shih, F. Y. (2010). Image processing and pattern recognition: Fundamentals and techniques. New York: Wiley-IEEE.

    Book  Google Scholar 

  • Sjöström, M., Wold, S., & Söderström, B. (1986). PLS discriminant plots. In E. S. Gelsema & L. N. Kanal (Eds.), Pattern recognition in practice I (pp. 461–470). Amsterdam: Elsevier.

    Google Scholar 

  • Sugiyama, T., Sugiyama, J., Tsuta, M., Fujita, K., Shibata, M., Kokawa, M., et al. (2010). NIR spectral imaging with discriminant analysis for detecting foreign materials among blueberries. Journal of Food Engineering, 101(3), 244–252.

    Article  Google Scholar 

  • Sun, D.-W. (Ed.). (2007). Computer vision technology for food quality evaluation. London: Academic.

    Google Scholar 

  • Sun, D.-W. (Ed.). (2009). Infrared spectroscopy for food quality analysis and control. London: Academic.

    Google Scholar 

  • Sun, D.-W. (Ed.). (2010). Hyperspectral imaging for food quality analysis and control. London: Academic.

    Google Scholar 

  • Taghizadeh, M., Gowen, A. A., & O’Donnell, C. P. (2011a). Comparison of hyperspectral imaging with conventional RGB imaging for quality evaluation of Agaricus bisporus mushrooms. Biosystems Engineering, 108(2), 191–194.

    Article  Google Scholar 

  • Taghizadeh, M., Gowen, A. A., & O’Donnell, C. P. (2011b). The potential of visible-near infrared hyperspectral imaging to discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom (Agaricus bisporus) surfaces. Computers and Electronics in Agriculture, 77(1), 74–80.

    Article  Google Scholar 

  • Unay, D., & Gosselin, B. (2006). Automatic defect segmentation of ‘Jonagold’ apples on multi-spectral images: A comparative study. Postharvest Biology and Technology, 42, 271–279.

    Article  Google Scholar 

  • Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M. F., & Debeir, O. (2011). Automatic grading of bi-colored apples by multispectral machine vision. Computers and Electronics in Agriculture, 75(1), 204–212.

    Article  Google Scholar 

  • Vila, J., Calpe, J., Pla, F., Gómez, L., Connell, J., Marchant, J. A., et al. (2005). SmartSpectra: Applying multispectral imaging to industrial environments. Real-Time Imaging, 11, 85–98.

    Article  Google Scholar 

  • Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2010). Analysis of acousto-optic tunable filter performance for imaging applications. Optical Engineering, 49(11), 113203–113203-9.

    Article  Google Scholar 

  • Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2011). Design of a configurable multispectral imaging system based on an AOTF. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(1), 259–262.

    Article  Google Scholar 

  • Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.). (2010). Handbook of partial least squares. Berlin: Springer.

    Google Scholar 

  • Wang, J., Nakano, K., Ohashi, S., Kubota, Y., Takizawa, K., & Sasaki, Y. (2011a). Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosystems Engineering, 108(4), 345–351.

    Article  Google Scholar 

  • Wang, W., Li, C., Tollner, E. W., Rains, G. C., & Gitaitis, R. D. (2011b). A liquid crystal tunable filter based shortwave infrared spectral imaging system: Calibration and characterization. Computers and Electronics in Agriculture. doi:10.1016/j.compag.2011.09.003.

  • Wang, W., Ca, L., Tollner, E. W., Rains, G. C., & Gitaitis, R. D. (2011c). A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration. Computers and Electronics in Agriculture. doi:10.1016/j.compag.2011.07.012.

  • Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D., & Rains, G. C. (2012). Shortwave infrared hyperspectral imaging for detecting sour skin (burkholderia cepacia)-infected onions. Journal of Food Engineering, 109(1), 36–48.

    Google Scholar 

  • Xing, J., & De Baerdemaeker, J. (2005). Bruise detection on ‘Jonagold’ apples using hyperspectral imaging. Postharvest Biology and Technology, 37(2), 152–162.

    Article  Google Scholar 

  • Xing, J., Bravo, C., Jancsók, P. T., Ramon, H., & De Baerdemaeker, J. (2005). Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering, 90(1), 27–36.

    Article  Google Scholar 

  • Xing, J., Jancsók, P. T., & De Baerdemaeker, J. (2007). Stem-end/calyx identification on apples using contour analysis in multispectral images. Biosystems Engineering, 96(2), 231–237.

    Article  Google Scholar 

  • Xing, J., Saeys, W., & De Baerdemaeker, J. (2007). Combination of chemometric tools and image processing for bruise detection on apples. Computers and Electronics in Agriculture, 56(1), 1–13.

    Article  Google Scholar 

  • Zhao, J., Vittayapadung, S., Quansheng, C., Chaitep, S., & Chuaviroj, R. (2009). Nondestructive measurement of sugar content of apple using hyperspectral imaging technique. Maejo International Journal of Science and Technology, 3(1), 130–142.

    CAS  Google Scholar 

  • Zhao, J., Ouyang, Q., Chen, Q., & Wang, J. (2010). Detection of bruise on pear by hyperspectral imaging sensor with different classification algorithms. Sensor Letters, 8, 570–576.

    Google Scholar 

Download references

Acknowledgement

This work was partially funded by the Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria de España (INIA) through research project RTA2009-00118-C02-01 and by the Ministerio de Ciencia e Innovación de España (MICINN) through research project DPI2010-19457, both projects with the support of European FEDER funds. This work was also been partially funded by the Universitat de València through project UV-INV-AE11-41271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Blasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorente, D., Aleixos, N., Gómez-Sanchis, J. et al. Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. Food Bioprocess Technol 5, 1121–1142 (2012). https://doi.org/10.1007/s11947-011-0725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0725-1

Keywords

Navigation