Skip to main content
Log in

Effect of Subcritical Water on the Extraction of Bioactive Compounds from Carrot Leaves

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Carrot leaves, which are generally considered as agricultural residue, are rich in bioactive compounds, such as polyphenols. This study investigates the extraction of polyphenols and luteolin (flavonoid) from freeze-dried and ground carrot leaves (d < 100 μm) using subcritical water (SCW). Water at elevated temperatures and at high pressure (40 bar) could behave as low-polar solvent to enhance extraction of organic compounds. SCW was investigated at different temperatures (110–230 °C), time (0–114 min), and solid-liquid ratio (15 and 35 g/L). Accordingly, it was revealed that total phenolic content (TPC) from carrot leaves using SCW has an increasing trend with temperature and resulted in 42.83 ± 1.85 mg per g of dry weight in gallic acid equivalent at 210 °C/113.5 min. However, luteolin content using SCW extraction behaved differently, where increase of temperature adversely affected its content. Hot water extraction studies revealed the presence of optimum luteolin content (0.768 ± 0.009-mg/g dry weight) at 120 °C for 10 min. In conclusion, it was shown that carrot leaves are a promising feedstock to extract polyphenols that has high content of luteolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aliakbarian, B., Fathi, A., Perego, P., & Dehghani, F. (2012). Extraction of antioxidants from winery wastes using subcritical water. The Journal of Supercritical Fluids, 65, 18–24.

    Article  CAS  Google Scholar 

  • Almeida, V. V. d., Bonafé, E. G., Muniz, E. C., Matsushita, M., Souza, N. E. D., & Visentainer, J. V. (2009). Optimization of the carrot leaf dehydration aiming at the preservation of omega-3 fatty acids. Química Nova, 32(5), 1334–1337.

    Article  Google Scholar 

  • Anekpankul, T., Goto, M., Sasaki, M., Pavasant, P., & Shotipruk, A. (2007). Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separation and Purification Technology, 55(3), 343–349.

    Article  CAS  Google Scholar 

  • Babbar, N., Oberoi, H. S., Uppal, D. S., & Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391–396.

    Article  CAS  Google Scholar 

  • Bhagat, J., Lobo, R., Kumar, N., Mathew, J. E., & Pai, A. (2014). Cytotoxic potential of Anisochilus carnosus (L.f.) wall and estimation of luteolin content by HPLC. BMC Complementary and Alternative Medicine, 14(1), 421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman, M. J., & Simon, P. W. (2013). Quantification of the relative abundance of plastome to nuclear genome in leaf and root tissues of carrot (Daucus carota L.) using quantitative PCR. Plant Molecular Biology Reporter, 31(4), 1040–1047.

    Article  CAS  Google Scholar 

  • Bucić-Kojić, A., Planinić, M., Tomas, S., Bilić, M., & Velić, D. (2007). Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81(1), 236–242.

    Article  CAS  Google Scholar 

  • Çam, M., & Hışıl, Y. (2010). Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry, 123(3), 878–885.

    Article  CAS  Google Scholar 

  • Carr, A. G., Mammucari, R., & Foster, N. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 172(1), 1–17.

    Article  CAS  Google Scholar 

  • Casazza, A. A., Aliakbarian, B., & Perego, P. (2011). Recovery of phenolic compounds from grape seeds: effect of extraction time and solid–liquid ratio. Natural Product Research, 25(18), 1751–1761.

    Article  CAS  PubMed  Google Scholar 

  • Cerrato, A., De Santis, D., & Moresi, M. (2002). Production of luteolin extracts from Reseda luteola and assessment of their dyeing properties. Journal of the Science of Food and Agriculture, 82(10), 1189–1199.

    Article  CAS  Google Scholar 

  • Chaaban, H., Ioannou, I., Chebil, L., Slimane, M., Gérardin, C., Paris, C., Charbonnel, C., Chekir, L., & Ghoul, M. (2017). Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of Food Processing and Preservation, 41(5).

  • Chainukool, S., Goto, M., Hannongbua, S., & Shotipruk, A. (2014). Subcritical water extraction of resveratrol from barks of Shorea roxburghii G. Don. Separation Science and Technology, 49(13), 2073–2078.

    Article  CAS  Google Scholar 

  • Chen, D., Bi, A., Dong, X., Jiang, Y., Rui, B., Liu, J., Yin, Z., & Luo, L. (2014). Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages. Biochemical and Biophysical Research Communications, 443(1), 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Chu, Y. H., Chang, C. L., & Hsu, H. F. (2000). Flavonoid content of several vegetables and their antioxidant activity. Journal of the Science of Food and Agriculture, 80(5), 561–566.

    Article  CAS  Google Scholar 

  • Díaz-García, M. C., Castellar, M. R., Obón, J. M., Obón, C., Alcaraz, F., & Rivera, D. (2015). Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. Journal of the Science of Food and Agriculture, 95(6), 1283–1293.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y.-J., Liu, W., Zu, Y.-G., Tong, M.-H., Li, S.-M., Yan, M., Efferth, T., & Luo, H. (2008). Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanuscajan (L.) Millsp.] leaves. Food Chemistry, 111(2), 508–512.

    Article  CAS  PubMed  Google Scholar 

  • Han, D., & Row, K. H. (2011). Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. Journal of the Science of Food and Agriculture, 91(15), 2888–2892.

    Article  CAS  PubMed  Google Scholar 

  • He, L., Zhang, X., Xu, H., Xu, C., Yuan, F., Knez, Ž., Novak, Z., & Gao, Y. (2012). Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC–ABTS+ assay. Food and Bioproducts Processing, 90(2), 215–223.

    Article  CAS  Google Scholar 

  • Hu, C., & Kitts, D. D. (2004). Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264. 7 cells. Molecular and Cellular Biochemistry, 265(1), 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Ju, Z., & Howard, L. R. (2005). Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. Journal of Food Science, 70(4).

  • Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, C., & Kapoor, H. C. (2002). Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science & Technology, 37(2), 153–161.

    Article  CAS  Google Scholar 

  • Ko, M.-J., Cheigh, C.-I., Cho, S.-W., & Chung, M.-S. (2011). Subcritical water extraction of flavonol quercetin from onion skin. Journal of Food Engineering, 102(4), 327–333.

    Article  CAS  Google Scholar 

  • Ko, M.-J., Cheigh, C.-I., & Chung, M.-S. (2014). Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chemistry, 143, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M. Y., Dutta, R., Prasad, D., & Misra, K. (2011). Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chemistry, 127(3), 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  • KyoungAh, L., Kim, K.-T., Nah, S.-Y., Chung, M.-S., Cho, S., & Paik, H.-D. (2011). Antimicrobial and antioxidative effects of onion peel extracted by the subcritical water. Food Science and Biotechnology, 20(2), 543–548.

    Article  Google Scholar 

  • KyoungAh, L., Kim, W. J., Kim, H. J., Kim, K.-T., & Paik, H.-D. (2013). Antibacterial activity of Ginseng (Panax ginseng CA Meyer) stems–leaves extract produced by subcritical water extraction. International Journal of Food Science & Technology, 48(5), 947–953.

    Article  CAS  Google Scholar 

  • Leite, C. W., Boroski, M., Boeing, J. S., Aguiar, A. C., França, P. B., Souza, N. E. D., & Visentainer, J. (2011). Chemical characterization of leaves of organically grown carrot Dacus carota L. in various stages of development for use as food. Food Science and Technology (Campinas), 31(3), 735–738.

    Article  Google Scholar 

  • Mukhopadhyay, S., Luthria, D. L., & Robbins, R. J. (2006). Optimization of extraction process for phenolic acids from black cohosh (Cimicifuga racemosa) by pressurized liquid extraction. Journal of the Science of Food and Agriculture, 86(1), 156–162.

    Article  CAS  Google Scholar 

  • Murakami, M., Yamaguchi, T., Takamura, H., & Atoba, T. (2004). Effects of thermal treatment on radical-scavenging activity of single and mixed polyphenolic compounds. Journal of Food Science, 69(1), 7–10.

    Article  Google Scholar 

  • Pang, P., Liu, Y., Zhang, Y., Gao, Y., & Hu, Q. (2014). Electrochemical determination of luteolin in peanut hulls using graphene and hydroxyapatite nanocomposite modified electrode. Sensors and Actuators B: Chemical, 194, 397–403.

    Article  CAS  Google Scholar 

  • Peng, B., & Yan, W. (2009). Solubility of luteolin in ethanol+ water mixed solvents at different temperatures. Journal of Chemical & Engineering Data, 55(1), 583–585.

    Article  CAS  Google Scholar 

  • Rababah, T. M., Hettiarachchy, N. S., & Horax, R. (2004). Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. Journal of Agricultural and Food Chemistry, 52(16), 5183–5186.

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran, A., Sarathikumar, N., Kalaiselvan, V., & Kalaivani, M. (2014). Simultaneous estimation of luteolin and apigenin in methanol leaf extract of Bacopa monnieri Linn by HPLC. British Journal of Pharmaceutical Research, 4(13), 1629–1637.

    Article  CAS  Google Scholar 

  • Roy, S., Mallick, S., Chakraborty, T., Ghosh, N., Singh, A. K., Manna, S., & Majumdar, S. (2015). Synthesis, characterisation and antioxidant activity of luteolin–vanadium (II) complex. Food Chemistry, 173, 1172–1178.

    Article  CAS  PubMed  Google Scholar 

  • Sawmiller, D., Li, S., Shahaduzzaman, M., Smith, A. J., Obregon, D., Giunta, B., Borlongan, C., Sandberg, P. R., & Tan, J. (2014). Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. International Journal of Molecular Sciences, 15(1), 895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scalbert, A., & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of Nutrition, 130(8), 2073S–2085S.

    Article  CAS  PubMed  Google Scholar 

  • Silva, E., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology, 55(3), 381–387.

    Article  CAS  Google Scholar 

  • Simon, P. W., Freeman, R. E., Vieira, J. V., Boiteux, L. S., Briard, M., Nothnagel, T., Michalik, B., & Kwon, Y. S. (2008). Carrot vegetables II (pp. 327–357). New York: Springer.

    Book  Google Scholar 

  • Škerget, M., Kotnik, P., Hadolin, M., Hraš, A. R., Simonič, M., & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2), 191–198.

    Article  CAS  Google Scholar 

  • Sólyom, K., Solá, R., Cocero, M. J., & Mato, R. B. (2014). Thermal degradation of grape marc polyphenols. Food Chemistry, 159, 361–366.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Liu, J., & Wang, Z. (2015). Application of tea polyphenols to edible oil as antioxidant by W/O microemulsion. Journal of Dispersion Science and Technology, 36(11), 1539–1547.

    Article  CAS  Google Scholar 

  • Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484–2494.

    Article  CAS  PubMed  Google Scholar 

  • Tunchaiyaphum, S., Eshtiaghi, M., & Yoswathana, N. (2013). Extraction of bioactive compounds from mango peels using green technology. International Journal of Chemical Engineering and Applications, 4(4), 194–198.

    Article  CAS  Google Scholar 

  • Turkmen, N., Sari, F., & Velioglu, Y. S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chemistry, 99(4), 835–841.

    Article  CAS  Google Scholar 

  • Vázquez, C. V., Rojas, M. G. V., Ramírez, C. A., Chávez-Servín, J. L., García-Gasca, T., Martínez, R. A. F., Castellote, A., & de la Torre-Carbot, K. (2015). Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin–Ciocalteu method. Food Chemistry, 176, 480–486.

    Article  CAS  PubMed  Google Scholar 

  • Vergara-Salinas, J. R., Pérez-Jiménez, J., Torres, J. L., Agosin, E., & Pérez-Correa, J. R. (2012). Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). Journal of Agricultural and Food Chemistry, 60(44), 10920–10929.

    Article  CAS  PubMed  Google Scholar 

  • Vergara-Salinas, J. R., Bulnes, P., Zúñiga, M. C., Pérez-Jiménez, J., Torres, J. L., Mateos-Martín, M. L., Agosin, E., & Pérez-Correa, J. R. (2013). Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. Journal of Agricultural and Food Chemistry, 61(28), 6929–6936.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., & Xie, M. (2010). Antibacterial activity and mechanism of luteolin on Staphylococcus aureus. Acta Microbiologica Sinica, 50(9), 1180–1184.

    CAS  PubMed  Google Scholar 

  • Warman, P. R., & Havard, K. (1997). Yield, vitamin and mineral contents of organically and conventionally grown carrots and cabbage. Agriculture, Ecosystems & Environment, 61(2), 155–162.

    Article  CAS  Google Scholar 

  • Wohlfarth, C. (2008). Dielectric constant of ethanol. In M. D. Lechner (Ed.), Supplement to IV/6 (pp. 133–139). Berlin: Springer Berlin Heidelberg.

    Google Scholar 

  • Xiao, J., Zhao, Y., Wang, H., Yuan, Y., Yang, F., Zhang, C., & Yamamoto, K. (2011). Noncovalent interaction of dietary polyphenols with common human plasma proteins. Journal of Agricultural and Food Chemistry, 59(19), 10747–10754.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Belghazi, M., Lagadec, A., Miller, D. J., & Hawthorne, S. B. (1998). Elution of organic solutes from different polarity sorbents using subcritical water. Journal of Chromatography A, 810(1), 149–159.

    Article  CAS  Google Scholar 

Download references

Funding

This research was carried out as part of the Food Industry Enabling Technologies (FIET) program funded by the New Zealand Ministry of Business, Innovation, and Employment (contract MAUX1402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Farid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, R., Ismail, M., Baroutian, S. et al. Effect of Subcritical Water on the Extraction of Bioactive Compounds from Carrot Leaves. Food Bioprocess Technol 11, 1895–1903 (2018). https://doi.org/10.1007/s11947-018-2151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2151-0

Keywords

Navigation