Skip to main content
Log in

Crosslinked polyurethane–epoxy hybrid emulsion with core–shell structure

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

An epoxy resin was used to prepare crosslinked polyurethane hybrid emulsion through the blocked NCO prepolymer mixing process. Due to their hydrophobicity, the amine chain extender, blocked –NCO, and epoxy are located inside the emulsion particles. Thus, the crosslinking reaction occurs mostly in the interior of the particles. In this way, the crosslinking density of the resin is increased without the use of solidifying agents or heating during film formation, and the stability of the emulsions remains uninfluenced. The effects of the type of amine chain extender and the type, dosage, and addition mode of the epoxy resin were studied in terms of mechanical properties and swelling properties in water and toluene of the cast films. Additionally, the stability of the single-pack hybrid emulsion was studied. The results showed that the sample prepared with diethylene triamine had good stability, chemical resistance, and high mechanical strength. The modulus and water resistance of the films increased with the epoxy resin content, which could reach 20 wt%. The type of amine chain extender affected the stability of the emulsions significantly. The molar ratio of NH/NCO at 1:1 led to the best film performance. The optimal temperature of the chain-extension reaction was approximately 80°C. The hybrid emulsions could be stored for at least 6 months without apparent performance changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hsu, SL, Xiao, HX, Szmant, H, Frisch, KC, "Polyurethane Ionomers. 1. Structure Properties Relationships of Polyurethane Ionomers." J. Appl. Polym. Sci., 29 (8) 2467–2479 (1984). doi:10.1002/app.1984.070290804

    Article  CAS  Google Scholar 

  2. Coogan, RG, Boghossian, RV, “Aqueous Dispersions of Polyurethane.” U.S. Patent 5,169,895, 1992

  3. Coogan, RG, Boghossian, RV, “Aqueous Dispersions of a Nonionic, Water Dispersible Polyurethane Having Pendent Polyoxyethylene Chains.” U.S. Patent 5,043,381, 1991

  4. Coogan, RG, "Post-crosslinking of Water-borne Urethanes." Prog. Org. Coat., 32 (1–4) 51–63 (1997)

    Article  CAS  ADS  Google Scholar 

  5. Frisch, KC, Suthar, BP, Xiao, HX, “Anionic Waterborne Polyurethane Dispersion.” U.S. Patent 5,672,653, 1997

  6. Orr, RB, Chicosky, L, Jr, “Method of Frothing Aqueous Ionic Polyurethane Dispersions and Products Produced Therefrom.” U.S. Patent 4,690,953, 1987

  7. Wickert, FA, “Ambient Cure Protective Coatings for Plastic Substrates.” U.S. Patent 5,066,705, 1991

  8. Blank, WJ, Tramontano, VJ, "Properties of Crosslinked Polyurethane Dispersions." Prog. Org. Coat., 27 (1–4) 1–15 (1996)

    Article  CAS  Google Scholar 

  9. Hirose, M, Zhou, J, Nagai, K, "The Structure and Properties of Acrylic-Polyurethane Hybrid Emulsions." Prog. Org. Coat., 38 (1) 27–34 (2000). doi:10.1016/S0300-9440(99)00081-8

    Article  CAS  Google Scholar 

  10. Sperling, LH (1997) Polymeric Multicomponent Materials. Wiley, New York

    Google Scholar 

  11. Adler, HJ, Jahny, K, Vogt-Birnbrich, B, "Polyurethane Macromers—New Building Blocks for Acrylic Hybrid Emulsions with Outstanding Performance." Prog. Org. Coat., 43 (4) 251–257 (2001). doi:10.1016/S0300-9440(01)00207-7

    Article  CAS  Google Scholar 

  12. Huang, X, Ren, T, Tang, X, "Porous Polyurethane/Acrylate Polymer Electrolytes Prepared by Emulsion Polymerization." Mater. Lett., 57 (26–27) 4182–4186 (2003)

    Article  CAS  Google Scholar 

  13. Park, MS, Cho, YH, Kim, BK, Jang, JS, "Fabrication of Reflective Holographic Gratings with Polyurethane Acrylate (PUA)." Curr. Appl. Phys., 2 (3) 249–252 (2002). doi:10.1016/S1567-1739(02)00101-3

    Article  Google Scholar 

  14. Du, H, Zhao, Y, Yin, N, Li, Q, Wang, J, Kang, M, Xiang, H, Wang, X, "Preparation and Properties of Waterborne Polyurethane Adhesives Modified by Polystyrene." J. Appl. Polym. Sci., 110 (5) 3156–3161 (2008). doi:10.1002/app.28848

    Article  CAS  Google Scholar 

  15. Zhao, C-X, Zhang, W-D, "Preparation of Waterborne Polyurethane Nanocomposites: Polymerization from Functionalized Hydroxyapatite." Eur. Polym. J., 44 (7) 1988–1995 (2008). doi:10.1016/j.eurpolymj.2008.04.029

    Article  CAS  Google Scholar 

  16. Kim, BK, Lee, JC, "Modification of Waterborne Polyurethanes by Acrylate Incorporations." J. Appl. Polym. Sci., 58 (7) 1117–1124 (1995). doi:10.1002/app.1995.070580705

    Article  CAS  Google Scholar 

  17. Dong, A, An, Y, Feng, S, Sun, D, "Preparation and Morphology Studies of Core-Shell Type Waterborne Polyacrylate–Polyurethane Microspheres." J. Colloid Interface Sci., 214 (1) 118–122 (1999). doi:10.1006/jcis.1999.5847

    Article  CAS  PubMed  Google Scholar 

  18. Chen, GN, Chen, KN, "Dual-Curing of Anionic Aqueous-Based Polyurethanes at Ambient Temperature." J. Appl. Polym. Sci., 67 (9) 1661–1671 (1998). doi:10.1002/(SICI)1097-4628(19980228)67:9<1661::AID-APP18>3.0.CO;2-X

    Article  CAS  Google Scholar 

  19. Chen, GN, Chen, KN, "Hybridization of Aqueous-Based Polyurethane with Glycidyl Methacrylate Copolymer." J. Appl. Polym. Sci., 71 (6) 903–913 (2001). doi:10.1002/(SICI)1097-4628(19990207)71:6<903::AID-APP6>3.0.CO;2-O

    Article  Google Scholar 

  20. Lee, ES, Kim, BK, "Modification of Aqueous Polyurethanes via Latex AB Crosslinked Polymers." J. Appl. Polym. Sci., 82 (6) 1315–1322 (2001). doi:10.1002/app.1966

    Article  CAS  Google Scholar 

  21. Qu, J-q, Chen, H-q, "Synthesis and Properties of Waterborne Polyurethane Coating Modified by Epoxy Resin." J. Chem. Eng. Chin. Univ., 16 (5) 570–574 (2002)

    CAS  Google Scholar 

  22. Randhir, P, Kalpesh, P, Jayant, P, "High-Performance Waterborne Coatings Based on Epoxy-Acrylic-Graft-Copolymer-Modified Polyurethane Dispersions." Polym. Int., 54 (2) 488–494 (2005). doi:10.1002/pi.1712

    Article  Google Scholar 

  23. Shi, YC, Wu, YS, Zhu, ZQ, "Modification of Aqueous Acrylic–Polyurethane via Epoxy Resin Postcrosslinking." J. Appl. Polym. Sci., 88 (2) 470–475 (2003). doi:10.1002/app.11750

    Article  CAS  Google Scholar 

  24. Jang, JY, Jhon, YK, Cheong, IW, Kim, JH, "Effect of Process Variables on Molecular Weight and Mechanical Properties of Water-Based Polyurethane Dispersion." Colloid Surf. A, 196 (2–3) 135–143 (2002)

    Article  CAS  Google Scholar 

  25. Jhon, JY, Cheong, IW, Kim, JH, "Chain Extension Study of Aqueous Polyurethane Dispersions." Colloid Surf. A, 179 (1) 71–78 (2001). doi:10.1016/S0927-7757(00)00714-7

    Article  CAS  Google Scholar 

  26. Kultys, A, Rogulska, M, Pikus, S, "The Synthesis and Characterization of New Thermoplastic Poly(thiourethane-urethane)s." J. Polym. Sci. A, 46 (5) 1770–1782 (2008). doi:10.1002/pola.22520

    Article  CAS  Google Scholar 

  27. Wu, G, Gu, J, Zhao, X, "Preparation and Dynamic Mechanical Properties of Polyurethane-Modified Epoxy Composites Filled with Functionalized Fly Ash Particulates." J. Appl. Polym. Sci., 105 (3) 1118–1126 (2007). doi:10.1002/app.26146

    Article  CAS  Google Scholar 

  28. Ahmad, I, Zaidi, JH, Hussain, R, Munir, A, "Synthesis, Characterization and Thermal Dissociation of 2-Butoxyethanol-Blocked Diisocyanates and Their Use in the Synthesis of Isocyanate-Terminated Prepolymers." Polym. Int., 56 (12) 1521–1529 (2007). doi:10.1002/pi.2295

    Article  CAS  Google Scholar 

  29. Ohtsuka, K, Hasegawa, K, Fukuda, A, "Synthesis and Curing Behavior of Urethane-Modified Epoxy-Resin Having Hydroxymethyl Group." Polym. Int., 31 (1) 25–34 (1993). doi:10.1002/pi.4990310105

    Article  CAS  Google Scholar 

  30. Chen, C-H, Chen, M-H, "Synthesis, Thermal Properties, and Morphology of Blocked Polyurethane/Epoxy Full-Interpenetrating Polymer Network." J. Appl. Polym. Sci., 100 (1) 323–328 (2006). doi:10.1002/app.23195

    Article  CAS  Google Scholar 

  31. Wicks, ZW, "New Developments in the Field of Blocked Isocyanates." Prog. Org. Coat., 9 (1) 3–28 (1981)

    Article  CAS  MathSciNet  Google Scholar 

  32. Liu, Y, Zhao, H, Li, G (2003) Isocyanates. Chemistry Industry Publishing Company of China, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufang Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, X., Mi, R., Huang, Y. et al. Crosslinked polyurethane–epoxy hybrid emulsion with core–shell structure. J Coat Technol Res 7, 373–381 (2010). https://doi.org/10.1007/s11998-009-9196-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-009-9196-y

Keywords

Navigation