Skip to main content
Log in

Analyzing and modeling the performance index of ultrasonic vibration assisted EDM using graph theory and matrix approach

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This paper is an endeavor to comprehend an interactive learning process of ultrasonic vibration assisted Electrical Discharge Machining (USEDM) process performance index. The factors influencing the USEDM process are identified and analyzed, through a logical and systematic framework of graph theory and matrix approach. The interdependency of factors are distinguished and examined. A systematic model of USEDM performance index is proposed to utilize graph theoretic approach (GTA). The performance index for USEDM is obtained so from the matrix model and digraphs to comprehend the power of subjective factors affecting. Factors and sub-factors impacting the performance are perceived and collected into five essential groups e.g. flushing, cavitation, abnormal discharge, dimensional accuracy and surface morphology. GTA framework reveals that the flushing, surface morphology and dimensional accuracy impact the basically ascertains, however cavitation effect can in like manner be unequivocal variables for USEDM performance index regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ho, K.H., Newman, S.T.: State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43, 1287–1300 (2003)

    Article  Google Scholar 

  2. Guo, Z.N., Lee, T.C., Yue, T.M., Lau, W.S.: Study on the machining mechanism of WEDM with ultrasonic vibration of the wire. J. Mater. Process. Technol. 69, 212–221 (1997)

    Article  Google Scholar 

  3. Murali, M.S., Ganesh, B.P., Kamlakar, P.R.: A study on process parameters of ultrasonic assisted micro EDM based on Taguchi method. J. Mater. Eng. Perform. 17, 210–215 (2007)

    Google Scholar 

  4. Changshui, G., Zhengxun, L.: A study of ultrasonically aided micro-electrical-discharge machining by the application of work-piece vibration. J. Mater. Process. Technol. 139, 226–228 (2003)

    Article  Google Scholar 

  5. Liew, P.J., Yan, J., Kuriyagawaa, T.: Fabrication of deep micro-holes in reaction-bonded SiC by ultrasonic cavitation assisted micro-EDM. Int. J. Mach. Tools Manuf. 76, 13–20 (2014)

    Article  Google Scholar 

  6. Egashira, K., Masuzawa, T.: Micro ultrasonic machining by the application of work piece vibration. CIRP Ann. Manuf. Technol. 48, 131–134 (1999)

    Article  Google Scholar 

  7. Praneetpongrung, C., Fukuzawa, Y., Nagasawa, S., Yamashita, K.: Effects of the EDM combined ultrasonic vibration on the machining properties of \({\rm Si}_{3}{\rm N}_{4}\). Mater. Transact. 51(11), 2113–2120 (2010)

    Article  Google Scholar 

  8. Singh, J., Walia, R.S., Satsangi, P.S., Singh, V.P.: Hybrid electric discharge machining process with continuous and discontinuous ultrasonic vibrations on workpiece. Int. J. Mech. Syst. Eng. 2(1), 22–33 (2012)

    Google Scholar 

  9. Shabgard, M.R., Badamchizadeh, M.A., Ranjbary, G., Amin, K.: Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes. J. Manuf. Syst. 32, 32–39 (2013)

    Article  Google Scholar 

  10. Jangra, K., Jain, A., Grover, S.: Optimization of Multiple-machining characteristics in wire electrical discharge machining of punch die using gray relational analysis. J. Sci. Ind. Res. 69, 606–612 (2010)

    Google Scholar 

  11. Jangra, K., Grover, S., Aggarwal, A.: Digraph and matrix method for the performance evaluation of carbide compacting die manufactured by wire EDM. Int. J. Adv. Manuf. Technol. 54, 579–591 (2010)

    Article  Google Scholar 

  12. Rao, R.V., Gandhi, O.P.: Digraph and Matrix methods for the machinability evaluation of work materials. Int. J. Mach. Tools Manuf. 42, 321–330 (2002)

    Article  Google Scholar 

  13. Tzeng, Y.F., Chen, F.C.: Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach. J. Mater. Process. Technol. 28, 1159–1168 (2007)

    Google Scholar 

  14. Gandhi, O.P., Agrawal, V.P.: FMEA—a digraph and matrix approach. Reliab. Eng. Syst. Saf. 35, 147–158 (1992)

    Article  Google Scholar 

  15. Pandey, P.C., Shan, H.S.: Modern Machining Process. Tata McGraw Hill publishing Company, New Delhi (2009)

    Google Scholar 

  16. Ghoreishi, M., Atkinson, J.: A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electro-discharge machining. J. Mater. Process. Technol. 120, 374–384 (2002)

    Article  Google Scholar 

  17. Kremer, D., Lebrun, J.L., Hosari, B., Moisan, A.: Effects of ultrasonic vibrations on the performances in EDM. Ann. CLRP 38(1), 199–202 (1989)

    Article  Google Scholar 

  18. Lee, T.C., Zhang, J.H., Lau, W.S.: Machining of engineering ceramics by ultrasonic vibration assisted EDM method. Mater. Manuf. Processes 13(1), 133–146 (1998)

    Article  Google Scholar 

  19. Schubert, A., Zeidler, H., Oschätzchen, M.H., Schneider, J., Hahn, M.: Enhancing micro-EDM using ultrasonic vibration and approaches for machining of nonconducting ceramics. J. Mech. Eng. 59(3), 156–164 (2013)

    Article  Google Scholar 

  20. Huang, H., Zhang, H., Zhou, L., Zheng, H.Y.: Ultrasonic vibration assisted electro-discharge machining of microholes in nitinol. J. Micromech. Microeng. 13, 693–700 (2003)

    Article  Google Scholar 

  21. Zhixin, J., Zhang, J., Xing, A.: Ultrasonic vibration pulse electro-discharge machining of holes in engineering ceramic. J. Mater. Process. Technol. 53, 811–816 (1995)

    Article  Google Scholar 

  22. Kim, D.J., Yi, S.M., Lee, Y.S., Chu, C.N.: Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration. J. Micromech. Microeng. 16, 1092–1097 (2006)

    Article  Google Scholar 

  23. Murthi, V.S.R., Philip, P.K.: A comparative analysis of machining characteristics in ultrasonic assisted EDM by response surface methodology. Int. J. Prod. Res. 25(2), 259–272 (1987)

    Article  Google Scholar 

  24. Kremer, D., Lhiaubet, C., Moisan, A.: Study of the effect of synchronizing ultrasonic vibrations with pulses in EDM. Ann. CIRP 40, 211–214 (1991)

    Article  Google Scholar 

  25. Pang, Y.L., Abdullah, A.Z., Bhatia, S.: Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 277, 1–14 (2011)

    Article  Google Scholar 

  26. Marinescu, N.I., Ghiculescu, D., Jitianu, G.: Solutions for technological performance increasing at ultrasonic aided electro discharge machining. Int. J. Mater. Form. 2(1), 681–684 (2009)

    Article  Google Scholar 

  27. Yu, Z.Y., Zhang, Y., Li, J., Luan, J., Zhao, F., Guo, D.: High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM. CIRP Ann. Manuf. Technol. 58, 213–216 (2009)

    Article  Google Scholar 

  28. Garn, R., Schubert, A., Zeidler, H.: Analysis of the effect of vibrations on the micro-EDM process at the workpiece surface. Precis. Eng. 35, 364–368 (2011)

    Article  Google Scholar 

  29. Mahardika, M., Prihandana, G.S., Endo, T., Tsujimoto, T., Matsumoto, N., Arifvianto, B., Mitsui, K.: The parameters evaluation and optimization of polycrystalline diamond micro-electro discharge machining assisted by electrode tool vibration. Int. J. Adv. Manuf. Technol. 60, 985–993 (2012)

    Article  Google Scholar 

  30. Lin, Y.C., Yan, B.H., Chang, Y.S.: Machining characteristics of titanium alloy (Ti-6Al-4V) using a combination process of EDM with USM. J. Mater. Process. Technol. 104, 171–177 (2000)

    Article  Google Scholar 

  31. Iwai, M., Ninomiya, S., Suzuki, K.: Improvement of EDM properties of PCD with electrode vibrated by ultrasonic transducer. In: The 17th CIRP Conference on Electro Physical and Chemical Machining (ISEM) Procedia CIRP 6, 146–150 (2013)

  32. Prihandana, G.S., Mahardika, M., Hamdi, M., Wong, Y.S., Mitsui, K.: Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes—Taguchi approach. Int. J. Mach. Tools Manuf. 49, 1035–1041 (2009)

    Article  Google Scholar 

  33. Narasimhan, J., Yu, Z., Rajurkar, K.P.: Tool wear compensation and path generation in micro and macro EDM. J. Manuf. Processes 7(10), 76–82 (2005)

    Google Scholar 

  34. Mohri, N., Saito, N., Higash, M.: A new process of finish machining on free surface by EDM methods. Ann. CIRP 40(1), 207–210 (1991)

    Article  Google Scholar 

  35. Shabgard, M.R., Sadizadeh, B., Kakoulvand, H.: The effect of ultrasonic vibration of work-piece in electrical discharge machining of AISIH13 tool steel. World Acad. Sci. Eng. Technol. 52, 392–396 (2009)

    Google Scholar 

  36. Teimouri, R., Baseri, H.: Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int. J. Adv. Eng. Technol. 67, 1371–1384 (2012)

    Google Scholar 

  37. Wansheng, Z., Zhenlong, W., Shichun, D., Guanxin, C., Hongyu, W.: Ultrasonic and electric discharge machining of deep hole titanium alloy. J. Mater. Process. Technol. 120, 101–106 (2002)

    Article  Google Scholar 

  38. Kwan, K.M., Benatar, A.: Modeling of ultrasonic forced wetting process by dimensional analysis. In: Proceedings of 59th Society of Plastics Engineers Annual Conference, pp 1239–1243 (2001)

  39. Srivastava, V., Pandey, P.M.: Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode. J. Manuf. Processes 14, 393–402 (2012)

    Article  Google Scholar 

  40. Abdullah, A., Shabgard, M.R., Ivanov, A., Mohammad, T., Shervanyi, T.: Effect of ultrasonic assisted EDM on the surface integrity of cemented tungsten carbide (WC-Co). Int. J. Adv. Manuf. Technol. 41, 268–280 (2009)

    Article  Google Scholar 

  41. Guu, Y.H., Hocheng, H.: Effect of workpiece rotation on machinability during electric discharge machining. Mater. Manuf. Processes 16(1), 91–101 (2001)

    Article  Google Scholar 

  42. Agrawal, S., Singh, R.K., Murtaza, Q.: Outsourcing decisions in reverse logistics: sustainable balanced scorecard and graph theoretic approach. Resour. Conserv. Recycl. 108, 41–53 (2016)

    Article  Google Scholar 

  43. Deo, N.: Graph theory with application to engineering and computer science. Prentice Hall, New Delhi (2000)

    Google Scholar 

  44. Gandhi, O.P., Agrawal, V.P.: A digraph approach to system wear evaluation and analysis. Trans. ASME 116, 268–274 (1994)

  45. Grover, S., Agrawal, V.P., Khan, I.A.: A digraph approach to TQM evaluation in an industry. Int. J. Prod. Res. 42(19), 4031–4053 (2004)

    Article  MATH  Google Scholar 

  46. Grover, S., Agrawal, V.P., Khan, I.A.: Role of human factors in TQM: a graph theoretic approach. Bench. Mark. Int. J. 13(4), 447–468 (2006)

    Article  Google Scholar 

  47. Hitoshi, O., Hamada, S., Aoyama, T.: Ultrasonic cavitation assisted EDM of CFRP. Electr. Mach. Technol. 36(112), 21–26 (2012)

    Google Scholar 

  48. Jurkat, W.B., Ryser, H.J.: Matrix factorization of determinants and permanents. J. Algebra 3, 1–27 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lin, Y.C., Yan, B.H., Huang, Y.F.: Surface modification of Al-Zn-Mg aluminum alloy using EDM with USM. J. Mater. Process. Technol. 115, 359–366 (2001)

    Article  Google Scholar 

  50. Mesee, J., Fukuzawa, Y., Shigeru, N., Daiki, H., Muttamara, A.: Surface modification using EDM combined ultrasonic vibration. Jpn. Soc. Precis. Eng. P32, 1213–1214 (2014)

    Google Scholar 

  51. Nishiwaki, N., Hori, S., Natsu, W.: Detection of electric discharge machining state by using ultrasonic technique. In: 17th World Conference on Nondestructive Testing, Shanghai, China, pp 25–28 (2008)

  52. Pandey, A., Singh, S.: Current research trends in variants of electrical discharge machining: a review. Int. J. Eng. Sci. Technol. 2(6), 2172–2191 (2010)

    Google Scholar 

  53. Rao, R.V., Gandhi, O.P.: Failure cause analysis of machine tools using digraph and matrix methods. Int. J. Mach. Tools Manuf. 42, 521–528 (2002)

    Article  Google Scholar 

  54. Shabgard, M.H., Alenabi, H.: Ultrasonic assisted electrical discharge machining of Ti-6Al-4V alloy. Mater. Manuf. Processes 30, 991–1000 (2015)

    Article  Google Scholar 

  55. Singh, J., Walia, R.S., Satsangi, P.S., Singh, V.P.: FEM modeling of ultrasonic vibration assisted workpiece in EDM process. Int. J. Mech. Syst. Eng. 1(1), 8–16 (2012)

    Google Scholar 

  56. Wani, M.F., Gandhi, O.P.: Development of maintainability index for mechanical systems. Reliab. Eng. Syst. Saf. 65(3), 259–270 (1999)

    Article  Google Scholar 

  57. Ghiculescu, D., Marinescu, N.I., Nanu, S.: Innovative solution for performance increase at micro electrical discharge machining aided by ultrasonic. Nonconventional Technologies Review Romania, pp 15–20 (2014)

  58. Ghiculescu, D., Marinescu, N.I., Nanu, S., Ghiculescu, D.: Multiphysics 3D finite element modelling of Micro-electrodischarge machining Aided by Ultrasonic. Nonconventional Technologies Review Romania, pp 72–77 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Grover, S. & Walia, R.S. Analyzing and modeling the performance index of ultrasonic vibration assisted EDM using graph theory and matrix approach. Int J Interact Des Manuf 12, 225–242 (2018). https://doi.org/10.1007/s12008-016-0355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-016-0355-y

Keywords

Navigation