Skip to main content
Log in

An Augmented Reality approach to factory layout design embedding operation simulation

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The subject of this work is layout planning of machinery, especially for Flexible Manufacturing Systems (FMS), using Augmented Reality tools. The goal is for the user to evaluate suggested layouts by taking into account non-measurable factors, such as operator experience, empirical or non-tacit knowledge and on-site impression. By reference to existing machinery (in the case study: CNC lathe and an industrial robot) the missing elements of a complete FMS cell (conveyor belts, automatic storage and retrieval system, other robots and CNC machines etc.) are super-imposed. The functional connection is enabled between the collaborating real-physical and the virtual machinery of the layout in the most convincing way, i.e., by simulation of the full production process involving movement, manipulation and processing of parts by real and virtual equipment in parallel and serial co-existence. This involves predefined scenarios that can be experienced exploiting alternative equipment in the same application and alternative layouts assessed in analogous applications. Static and dynamic simulation of the manufacturing cell offers the possibility of extensive analysis of the selected layout by walk-through navigation. The application is implemented in ARKit™ API tool and Unity3D™.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang, S., Nee, A.Y.C.: A novel facility layout planning and optimization methodology. CIRP Ann. Manuf. Technol. 62, 483–486 (2013). https://doi.org/10.1016/j.cirp.2013.03.133

    Article  Google Scholar 

  2. Paelke, V.: Augmented reality in the smart factory: supporting workers in an industry 4.0. environment. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–4. IEEE (2014)

  3. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Found. Trends Hum. Comput. Interact. 8, 73–272 (2015). https://doi.org/10.1561/1100000049

    Article  Google Scholar 

  4. Jeong, B., Yoon, J.: Competitive intelligence analysis of augmented reality technology using patent information. Sustainability 9, 497 (2017). https://doi.org/10.3390/su9040497

    Article  Google Scholar 

  5. Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D., Michalos, G., Georgoulias, K.: Digital manufacturing: history, perspectives, and outlook. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 223, 451–462 (2009). https://doi.org/10.1243/09544054JEM1241

    Article  Google Scholar 

  6. Shariatzadeh, N., Sivard, G., Chen, D.: Software evaluation criteria for rapid factory layout planning, design and simulation. Proc. CIRP 3, 299–304 (2012). https://doi.org/10.1016/j.procir.2012.07.052

    Article  Google Scholar 

  7. Pentenrieder, K., Bade, C., Doil, F., Meier, P.: Augmented Reality-based factory planning—an application tailored to industrial needs. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, pp. 31–42

  8. Lee, J., Han, S., Yang, J.: Construction of a computer-simulated mixed reality environment for virtual factory layout planning. Comput. Ind. 62, 86–98 (2011). https://doi.org/10.1016/j.compind.2010.07.001

    Article  Google Scholar 

  9. Gupta, O.K., Jarvis, R.A.: Using a virtual world to design a simulation platform for vision and robotic systems. In: Advances in Visual Computing, pp. 233–242. Springer (2009)

  10. Reinhart, G., Munzert, U., Vogl, W.: A programming system for robot-based remote-laser-welding with conventional optics. CIRP Ann. Manuf. Technol. 57, 37–40 (2008). https://doi.org/10.1016/j.cirp.2008.03.120

    Article  Google Scholar 

  11. Akan, B., Ameri, A., Curuklu, B., Asplund, L.: Intuitive industrial robot programming through incremental multimodal language and augmented reality. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3934–3939 (2011)

  12. Chong, J., Ong, S., Nee, A., Youcef-Youmi, K.: Robot programming using augmented reality: an interactive method for planning collision-free paths. Robot. Comput. Integr. Manuf. 25, 689–701 (2009). https://doi.org/10.1016/j.rcim.2008.05.002

    Article  Google Scholar 

  13. Fang, H., Ong, S., Nee, A.: Interactive robot trajectory planning and simulation using augmented reality. Robot. Comput. Integr. Manuf. 28, 227–237 (2012). https://doi.org/10.1016/j.rcim.2011.09.003

    Article  Google Scholar 

  14. Vosniakos, G.C., Levedianos, E., Gogouvitis, X.V.: Streamlining virtual manufacturing cell modelling by behaviour modules. Int. J. Manuf. Res. 10, 17–43 (2015). https://doi.org/10.1504/IJMR.2015.067616

    Article  Google Scholar 

  15. Menck, N., Yang, X., Weidig, C., Winkes, P., Lauer, C., Hagen, H., Hamann, B., Aurich, J.C.: Collaborative factory planning in virtual reality. Proc. CIRP 3, 317–322 (2012). https://doi.org/10.1016/j.procir.2012.07.055

    Article  Google Scholar 

  16. Luo, Y.-B.: A virtual layout system integrated with polar coordinates-based genetic algorithm. Int. J. Comput. Appl. Technol. 35, 122–127 (2009). https://doi.org/10.1504/IJCAT.2009.026589

    Article  Google Scholar 

  17. Nee, A.Y.C., Ong, S.K., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. CIRP Ann. Manuf. Technol. 61, 657–679 (2012). https://doi.org/10.1016/j.cirp.2012.05.010

    Article  Google Scholar 

  18. Hibino, H., Inukai, T., Fukuda, Y.: Efficient manufacturing system implementation based on combination between real and virtual factory. Int. J. Prod. Res. 44, 3897–3915 (2006). https://doi.org/10.1080/00207540600632224

    Article  MATH  Google Scholar 

  19. Bal, M., Hashemipour, M.: Virtual factory approach for implementation of holonic control in industrial applications: a case study in die-casting industry. Robot. Comput. Integr. Manuf. 25, 570–581 (2009). https://doi.org/10.1016/j.rcim.2008.03.020

    Article  Google Scholar 

  20. Abdul Kadir, A., Xu, X., Haemmerle, E.: Virtual machine tools and virtual machining—a technological review. Robot. Comput. Integr. Manuf. 27, 494–508 (2011). https://doi.org/10.1016/j.rcim.2010.10.003

    Article  Google Scholar 

  21. Pedrazzoli, P., Sacco, M., Jonsson, A., Boer, C.R.: Virtual factory framework: key enabler for future manufacturing. In: Cunha, P., Maropoulos, P. (eds), Digital Enterprise Technology: Perspectives and Future Challenges, pp 83–90. Springer (2007)

  22. Cecil, J., Kanchanapiboon, A.: Virtual engineering approaches in product and process design. Int. J. Adv. Manuf. Technol. 31, 846–856 (2007). https://doi.org/10.1007/s00170-005-0267-7

    Article  Google Scholar 

  23. Ostermayer, D., Aurich, J., Wagenknecht, C.: Improvement of manufacturing processes with virtual reality based CIP-workshops. Int. J. Prod. Res. 47, 5297–5309 (2009). https://doi.org/10.1080/00207540701816569

    Article  Google Scholar 

  24. Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Proc. CIRP 17, 9–13 (2014). https://doi.org/10.1016/j.procir.2014.03.115

    Article  Google Scholar 

  25. Unity_Technologies (2017) Unity User Manual (5.5). https://docs.unity3d.com/Manual/index.html. Accessed 11 Feb 2017

  26. Dilger, D.E.: Inside Apple’s ARKit and Visual Inertial Odometry, new in iOS 11. https://appleinsider.com/articles/17/10/12/inside-apples-arkit-and-visual-inertial-odometry-new-in-ios-11. Accessed 11 Apr 2018

  27. Gogouvitis, X.V., Vosniakos, G.-C.: Construction of a virtual reality environment for robotic manufacturing cells. Int. J. Comput. Appl. Technol. 51, 173–184 (2015). https://doi.org/10.1504/IJCAT.2015.069331

    Article  Google Scholar 

  28. Michas, S., Matsas, E., Vosniakos, G.-C.: Interactive programming of industrial robots for edge tracing using a virtual reality gaming environment. Int. J. Mech. Manuf. Syst. 10, 237–259 (2017). https://doi.org/10.1504/IJMMS.2017.087548

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George-Christopher Vosniakos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 60381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokkas, A., Vosniakos, GC. An Augmented Reality approach to factory layout design embedding operation simulation. Int J Interact Des Manuf 13, 1061–1071 (2019). https://doi.org/10.1007/s12008-019-00567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00567-6

Keywords

Navigation