Skip to main content

Advertisement

Log in

A flexible and open environment for discrete event simulations and smart manufacturing

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This work proposes an open and flexible environment for the interaction of relevant technologies within the framework of Industry 4.0. In this work, a discrete event simulation was developed using open-source software, which enables seamless integration with communication protocols, optimization tools, and a graphical user interface that works in augmented reality. The discrete event simulation runs locally but can obtain the input parameters through a request to a web app stored in the cloud. The proposed environment was tested through numerical experiments adapted from a real manufacturing process, which was parametrized and generalized to be represented in the discrete event simulation. Among the numerical experiments presented were a baseline scenario and 5 variations. An optimization in the parameters of the process is presented which demonstrated the capacity of the developed discrete event simulation to be integrated with external software. An augmented reality app was developed and installed in a smartphone to provide a graphical interface with the user and provide a spatial representation of the machine linked with the studied process. This work represents a step towards the creation of a Digital Twin of a manufacturing process and the implementation of a Digital Thread that transport the information of different platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sukhodolov, Y.A.: The notion, essence, and peculiarities of industry 4.0 as a sphere of industry. In: Studies in Systems, Decision and Control. Springer International Publishing, pp. 3–10 (2019)

  2. Schumacher, A., Erol, S., Sihn, W.: A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. In: Procedia CIRP (2016)

  3. Jazdi, N.: Cyber physical systems in the context of Industry 4.0. In: Proceedings of 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2014. IEEE Computer Society (2014)

  4. Tao, F., Qi, Q., Wang, L., Nee, A.Y.C.: Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering 5, 653–661 (2019). https://doi.org/10.1016/j.eng.2019.01.014

    Article  Google Scholar 

  5. Gatsou, A.: Discrete event simulation for manufacturing system analysis: An industrial case study, https://www.researchgate.net/publication/237045327_Discrete_event_simulation_for_manufacturing_system_analysis_An_industrial_case_study

  6. Wang, S., Wan, J., Zhang, D., Li, D., Zhang, C.: Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput. Networks. 101, 158–168 (2016). https://doi.org/10.1016/j.comnet.2015.12.017

    Article  Google Scholar 

  7. Wang, M., Zhong, R.Y., Dai, Q., Huang, G.Q.: A MPN-based scheduling model for IoT-enabled hybrid flow shop manufacturing. Adv. Eng. Inform. 30, 728–736 (2016). https://doi.org/10.1016/J.AEI.2016.09.006

    Article  Google Scholar 

  8. Thramboulidis, K., Christoulakis, F.: UML4IoT—a UML-based approach to exploit IoT in cyber-physical manufacturing systems. Comput. Ind. 82, 259–272 (2016). https://doi.org/10.1016/J.COMPIND.2016.05.010

    Article  Google Scholar 

  9. Trebuňa, P., Kliment, M., Edl, M., Petrik, M.: Creation of simulation model of expansion of production in manufacturing companies. In: Procedia Engineering (2014)

  10. Neeraj, R.R., Nithin, R.P., Niranjhan, P., Sumesh, A., Thenarasu, M.: Modelling and simulation of discrete manufacturing industry. In: Materials Today: Proceedings (2018)

  11. Nicopolitidis, P., Zarai, F., Obaidat, M.S.: Modeling and Simulation of Computer Networks and Systems : Methodologies and Applications. Morgan Kaufmann, Amsterdam (2015)

    Google Scholar 

  12. Jackson, K., Efthymiou, K., Borton, J.: Digital manufacturing and flexible assembly technologies for reconfigurable aerospace production systems. Procedia CIRP 52, 274–279 (2016). https://doi.org/10.1016/j.procir.2016.07.054

    Article  Google Scholar 

  13. Söderberg, R., Wärmefjord, K., Carlson, J.S., Lindkvist, L.: Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Ann. Manuf. Technol. (2017). https://doi.org/10.1016/j.cirp.2017.04.038

    Article  Google Scholar 

  14. Schluse, M., Priggemeyer, M., Atorf, L., Rossmann, J.: Experimentable digital twins-streamlining simulation-based systems engineering for Industry 4.0. IEEE Trans. Ind. Inform. 14, 1722–1731 (2018). https://doi.org/10.1109/TII.2018.2804917

    Article  Google Scholar 

  15. Tuma, Z., Tuma, J., Knoflíček, R., Blecha, P., Bradác, F.: The process simulation using by virtual reality. In: Procedia Engineering (2014)

  16. Zhou, Z., Feng, Y., Rong, G., Zhu, F.: Virtual factory integrated manufacturing system for process simulation and monitoring. In: IFAC Proceedings Volumes (IFAC-PapersOnline) (2011)

  17. Palmarini, R., Erkoyuncu, J.A., Roy, R., Torabmostaedi, H.: A systematic review of augmented reality applications in maintenance (2018)

  18. Evans, G., Miller, J., Iglesias Pena, M., MacAllister, A., Winer, E.: Evaluating the Microsoft HoloLens through an augmented reality assembly application. In: Degraded Environments: Sensing, Processing, and Display 2017, p. 101970V (2017)

  19. Navab, N.: Developing killer apps for industrial augmented reality. IEEE Comput. Graph. Appl. 16–20 (2004)

  20. Pang, T.Y., Pelaez Restrepo, J.D., Cheng, C.-T., Yasin, A., Lim, H., Miletic, M.: Developing a digital twin and digital thread framework for an ‘Industry 4.0’ shipyard. Appl. Sci. 11, 1097 (2021). https://doi.org/10.3390/app11031097

    Article  Google Scholar 

  21. Erdős, G., Paniti, I., Tipary, B.: Transformation of robotic workcells to digital twins. CIRP Ann. 69, 149–152 (2020). https://doi.org/10.1016/j.cirp.2020.03.003

    Article  Google Scholar 

  22. Kliment, M., Popovič, R., Janek, J.: Analysis of the production process in the selected company and proposal a possible model optimization through PLM software module tecnomatix Plant Simulation. In: Procedia Engineering (2014)

  23. Barrera-Diaz, C.A., Oscarsson, J., Lidberg, S., Sellgren, T.: Discrete event simulation output data-handling system in an automotive manufacturing plant. In: Procedia Manufacturing (2018)

  24. Mies, D., Marsden, W., Warde, S.: Overview of additive manufacturing informatics: “a digital thread.” Integr. Mater. Manuf. Innov. 5, 114–142 (2016). https://doi.org/10.1186/s40192-016-0050-7

    Article  Google Scholar 

  25. A digital thread approach to support manufacturing-influenced conceptual ai…: BiblioXplora. https://0-eds-b-ebscohost-com.biblioteca-ils.tec.mx/eds/pdfviewer/pdfviewer?vid=19&sid=0c348596-2f4d-43cc-9891-aaad206c810b%40sessionmgr103

  26. Leng, J., Wang, D., Shen, W., Li, X., Liu, Q., Chen, X.: Digital twins-based smart manufacturing system design in Industry 4.0: a review. J. Manuf. Syst. 60, 119–137 (2021). https://doi.org/10.1016/J.JMSY.2021.05.011

    Article  Google Scholar 

  27. Eriksson, K., Hendberg, T.: A case study initiating discrete event simulation as a tool for decision making in I4.0 manufacturing. Lect. Notes Bus. Inf. Process. 414 LNBIP, 84–96 (2021). https://doi.org/10.1007/978-3-030-73976-8_7

  28. Toro, C., Wang, W., Humza, A.: Implementing Industry 4.0: the model factory as the key enabler for the future of manufacturing. 31–85 (2021). https://doi.org/10.1007/978-3-030-67270-6

  29. Carlucci, D., Renna, P., Materi, S., Schiuma, G.: Intelligent decision-making model based on minority game for resource allocation in cloud manufacturing. Manag. Decis. 58, 2305–2325 (2020). https://doi.org/10.1108/MD-09-2019-1303

    Article  Google Scholar 

  30. Qin, H., Wang, H., Zhang, Y., Lin, L.: Constructing digital twin for smart manufacturing. In: Proceedings of 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design CSCWD 2021, pp. 638–642 (2021). https://doi.org/10.1109/CSCWD49262.2021.9437791

  31. Zhu, Z., Liu, C., Xu, X.: Visualisation of the digital twin data in manufacturing by using augmented reality. In: Procedia CIRP. Elsevier B.V. , pp. 898–903 (2019)

  32. De Pace, F., Manuri, F., Sanna, A., Fornaro, C.: A systematic review of Augmented Reality interfaces for collaborative industrial robots. (2020). https://doi.org/10.1016/j.cie.2020.106806

  33. Cai, Y., Wang, Y., Burnett, M.: Using augmented reality to build digital twin for reconfigurable additive manufacturing system. J. Manuf. Syst. 56, 598–604 (2020). https://doi.org/10.1016/j.jmsy.2020.04.005

    Article  Google Scholar 

  34. Dalle Mura, M., Dini, G.: An augmented reality approach for supporting panel alignment in car body assembly. J. Manuf. Syst. 59, 251–260 (2021). https://doi.org/10.1016/j.jmsy.2021.03.004

    Article  Google Scholar 

  35. Andersen, D., Popescu, V.: AR interfaces for mid-air 6-DoF alignment: ergonomics-aware design and evaluation. In: Proceedings of 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2020, pp. 289–300 (2020). https://doi.org/10.1109/ISMAR50242.2020.00055

  36. Aromaa, S., Väätänen, A., Kaasinen, E., Uimonen, M., Siltanen, S.: Human factors and ergonomics evaluation of a tablet based augmented reality system in maintenance work. ACM Int. Conf. Proc. Ser. 118–125 (2018). https://doi.org/10.1145/3275116.3275125

  37. Lim, A.K., Ryu, J., Yoon, H.M., Yang, H.C., Kim, S.-K.: Ergonomic effects of medical augmented reality glasses in video-assisted surgery. Surg. Endosc. 1, 3. https://doi.org/10.1007/s00464-021-08363-8

  38. Hasanzadeh, S., Polys, N.F., De La Garza, J.M.: Presence, mixed reality, and risk-taking behavior: a study in safety interventions. IEEE Trans. Vis. Comput. Graph. 26, 2115–2125 (2020). https://doi.org/10.1109/TVCG.2020.2973055

    Article  Google Scholar 

  39. Bauerfeind, K., Drüke, J., Schneider, J., Haar, A., Bendewald, L., Baumann, M.: Navigating with augmented reality—how does it affect drivers’ mental load? Appl. Ergon. 94 (2021). https://doi.org/10.1016/J.APERGO.2021.103398

  40. Smith, M., Gabbard, J.L., Burnett, G., Hare, C., Singh, H., Skrypchuk, L.: Determining the impact of augmented reality graphic spatial location and motion on driver behaviors (2021). https://doi.org/10.1016/j.apergo.2021.103510

  41. About SimPy

  42. Ahuett-Garza, H., Urbina Coronado, P.D.: A reference model for evolving digital twins and its application to cases in the manufacturing floor. Smart Sustain. Manuf. Syst. 3, 20190049 (2019). https://doi.org/10.1520/ssms20190049

    Article  Google Scholar 

  43. Krenczyk, D., Kempa, W.M., Kalinowski, K., Grabowik, C., Paprocka, I.: Integration of manufacturing operations management tools and discrete event simulation. In: IOP Conference Series: Materials Science and Engineering (2018)

  44. Jung, T., Jazdi, N., Weyrich, M.: A survey on dynamic simulation of automation systems and components in the internet of things. IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA. 1–4 (2018). https://doi.org/10.1109/ETFA.2017.8247770

  45. Saez, M., Maturana, F.P., Barton, K., Tilbury, D.M.: Real-time manufacturing machine and system performance monitoring using internet of things. IEEE Trans. Autom. Sci. Eng. 15, 1735–1748 (2018). https://doi.org/10.1109/TASE.2017.2784826

    Article  Google Scholar 

  46. Rodrigues, G.S., Espíndola Ferreira, J.C., Rocha, C.R.: A novel method for analysis and optimization of electric energy consumption in manufacturing processes. Procedia Manuf. 17, 1073–1081 (2018). https://doi.org/10.1016/j.promfg.2018.10.078

    Article  Google Scholar 

  47. Ingemansson, A., Ylipää, T., Bolmsjö, G.S.: Reducing bottle-necks in a manufacturing system with automatic data collection and discrete-event simulation. J. Manuf. Technol. Manag. 16, 615–628 (2005). https://doi.org/10.1108/17410380510609474

    Article  Google Scholar 

  48. Karanjkar, N., Joglekar, A., Mohanty, S., Prabhu, V., Raghunath, D., Sundaresan, R.: Digital twin for energy optimization in an SMT-PCB assembly line. In: Proceedings of 2018 IEEE International Conference on Internet of Things and Intelligence System, IOTAIS 2018, pp. 85–89 (2019). https://doi.org/10.1109/IOTAIS.2018.8600830

  49. Turner, C.J., Hutabarat, W., Oyekan, J., Tiwari, A.: Discrete event simulation and virtual reality use in industry: new opportunities and future trends. IEEE Trans. Hum. Mach. Syst. 46, 882–894 (2016). https://doi.org/10.1109/THMS.2016.2596099

    Article  Google Scholar 

  50. Requests: HTTP for Humans

Download references

Acknowledgements

The authors would like to acknowledge the financial and the technical support of Writing Lab, TecLabs, Tecnologico de Monterrey, in the production of this work and the research group Automotive Consortium for Cyberphysical Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Daniel Urbina Coronado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ruben Febronio Garcia Martinez and Jose Abraham Valdivia Puga contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia Martinez, R.F., Valdivia Puga, J.A., Urbina Coronado, P.D. et al. A flexible and open environment for discrete event simulations and smart manufacturing. Int J Interact Des Manuf 15, 509–524 (2021). https://doi.org/10.1007/s12008-021-00778-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-021-00778-w

Keywords

Navigation