Skip to main content
Log in

Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation

  • Session 4
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Litchfield, J. H. (1996), Adv. Appl. Microbiol. 42, 45–95.

    Google Scholar 

  2. Parajo, J. C., Alonso, J. L., and Moldes, A. B. (1997), Food Biotechnol. 11(1), 45–58.

    Article  CAS  Google Scholar 

  3. Garde, A., Jonsson, G., Schmidt, A. S., and Ahring, B. K. (2002), Bioresour. Technol. 8(3), 217–223.

    Article  Google Scholar 

  4. Neureiter, M., Danner, H., Madzingaidzo, L., et al. (2004), Chem. Biochem. Eng. Q. 18(1), 55–63.

    CAS  Google Scholar 

  5. Iyer, P. V. and Lee, Y. Y. (1999), Biotechnol. Lett. 21(5), 371–373.

    Article  CAS  Google Scholar 

  6. Lee, S. -M., Koo, Y. -M., and Lin, J. (2004), Adv. Biochem. Eng./Biotechnol. 87, 173–194.

    CAS  Google Scholar 

  7. Naveena, B. J., Altaf, M.; Bhadriah, K., and Reddy, G. (2005), Bioresour. Technol. 96(4), 485–490.

    Article  CAS  Google Scholar 

  8. McMillan, J. D., Newman, M. M., Templeton, D. W., and Mohagheghi, A. (1999), App. Biochem. Biotechnol. 77–79, 649–665.

    Article  Google Scholar 

  9. Sedlak, M. and Ho, N. W. Y. (2004), Appl. Biochem. Biotechnol. 113–116, 403–416.

    Article  Google Scholar 

  10. Kim, T. H. and Lee, Y. Y. (2005), Appl. Biochem. Biotechnol. 121–124, 1119–1131.

    Article  Google Scholar 

  11. Dien, B. S., Nichols, N. N., and Bothast, R. J. (2001), J. Ind. Microbiol. Biotechnol. 27(4), 259–264.

    Article  CAS  Google Scholar 

  12. Dien, B. S., Nichols, N. N., and Bothast, R. J. (2002), J. Ind. Microbiol. Biotechnol. 29(5), 221–227.

    Article  CAS  Google Scholar 

  13. Patel, M., Ou, M., Ingram, L. O., and Shanmugam, K. T. (2004), Biotechnol. Lett. 26(11), 865–868.

    Article  CAS  Google Scholar 

  14. Patel, M., Ou, M., Ingram, M., and Shanmugam, K. T. (2005) Biotechnol. Progress 21(5), 1453–1460.

    Article  CAS  Google Scholar 

  15. McCaskey, T. A., Zhou, S. D., Britt, S. N., and Strickland, R. (1994), Appl. Biochem. Biotechnol. 45–46, 555–563.

    Google Scholar 

  16. Perttunen, J., Myllykoski, L., and Keiski, R. L. (2001), Lactic acid fermentation of hemicellulose liquors and their activated carbon pretreatments. Focus on Biotechnology, 4 (Engineering and Manufacturing for Biotechnology), 29–38.

    CAS  Google Scholar 

  17. Bustos, G., Moldes, A. B., Cruz, J. M., and Dominguez, J. M. (2004), J. Sci. Food Agric. 84(15), 2105–2112.

    Article  CAS  Google Scholar 

  18. Zhu, Y., Kim, T. H., Lee, Y. Y., Chen, R., and Elander, R. T. (2005), Appl. Biochem. Biotechnol. 129–132, 586–598.

    Google Scholar 

  19. DeMan, J. D., Rogosa, M., and Sharp, M. E. (1960) J. Appl. Bact. 23, 130–135.

    Google Scholar 

  20. Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.

    Article  Google Scholar 

  21. NREL (1996), Laboratory analytical procedures, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  22. Zhu, Y., Lee, Y.Y., and Elander, R. T. (2004), Appl. Biochem. Biotechnol. 117, 103–114.

    Article  CAS  Google Scholar 

  23. Box, G. E. P. and Draper, N. R. (1987), Empirical Model-building and Response Surfaces, John Wiley & Sons, Inc.

  24. Rivas, B., Moldes, A. B., Dominguez, J. M., and Parajo, J. C. (2004), Int. J. Food Microbiol. 97(1), 93–98.

    Article  CAS  Google Scholar 

  25. Spindler, D. D., Wyman, C. E., and Grohmann, K. (1989), Biotechnol. Bioeng. 34(2), 189–195.

    Article  CAS  Google Scholar 

  26. Mercier, P., Yerushalmi, L., Rouleau, D., and Dochain, D. (1992), J. Chem. Technol. Biotechnol. 55(2), 111–121.

    Article  CAS  Google Scholar 

  27. Hujane, M. and Linko, Y. -Y. (1996), Appl. Microbiol. Biotechnol. 45(3), 307–313.

    Article  Google Scholar 

  28. Nancib, N., Nancib, A., Boudjelal, A., Benslimane, C., Blanchard, F., and Boudrant, J. (2001), Bioresour. Technol. 78(2), 149–153.

    Article  CAS  Google Scholar 

  29. Amartey, S. and Jeffries, T. W. (1994), Biotechnol. Lett. 16(2), 211–214.

    Article  CAS  Google Scholar 

  30. Tellez-Luis, S. J., Moldes, A. B., Vazquez, M., and Alonso, J. L. (2003), Food Bioprod. Proc. 81(C3), 250–256.

    Article  CAS  Google Scholar 

  31. Bustos, G., Modles, A. B., Cruz, J. M., and Dominguez, J. M. (2005), Biotechnol. Prog. 21(3), 793–798.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Lee, Y.Y. & Elander, R.T. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 137, 721–738 (2007). https://doi.org/10.1007/s12010-007-9092-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9092-9

Index Entries

Navigation