Skip to main content
Log in

Cellulase Production Under Solid-State Fermentation by Trichoderma reesei RUT C30: Statistical Optimization of Process Parameters

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugar cane bagasse was used as substrate for cellulase production using Trichoderma reesei RUT C30, and the culture parameters were optimized for enhancing cellulase yield. The culture parameters, such as incubation temperature, duration of incubation, and inducer concentration, were optimized for enhancing cellulase yield using a Box–Behnken experimental design. The optimal level of each parameter for maximum cellulase production by the fungus was determined. Predicted results showed that cellulase production was highest (25.6 FPAase units per gram dry substrate) when the inducer concentration was 0.331 ml/gds, and the incubation temperature and time were 33 °C and 67 h, respectively. Crude inducer generated by cellulase action was found to be very effective in inducing cellulases. Validation of predicted results was done, and the experimental values correlated well with that of the predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biocommodity engineering. Biotechnology Progress, 15, 777–793.

    Article  CAS  Google Scholar 

  2. Reith, J. H., den Uil, H., van Veen, H., de Laat WTAM, Niessen, J. J., de Jong, E., et al. (2002). Co-production of bioethanol, electricity and heat from biomass residues. 12th European Conference and Technology Exhibition on Biomass from Energy, Industry and Climate Protection, Amsterdam, The Netherlands, 17–21 June.

  3. Wen, Z., Liao, W., & Chen, S. (2005). Production of cellulase/b-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry, 40, 3087–3094.

    Article  CAS  Google Scholar 

  4. Chahal, D. S. (1985). Solid-state fermentation with Trichoderma reesei for cellulase production. Applied Environmental Microbiology, 56, 554–557.

    Google Scholar 

  5. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues I: sugarcane bagasse. Bioresource Technology, 74, 69–80.

    Article  CAS  Google Scholar 

  6. Du Toit, P. J., Olivier, S. P., & van Bijon, P. L. (1984). Sugarcane bagasse as a possible source of fermentable carbohydrates. I. Characterization of bagasse with regard to monosaccharide, hemicellulose, and animoacid composition. Biotechnology and Bioengineering, 26, 1071–1078.

    Article  CAS  Google Scholar 

  7. Aiello, C., Ferrer, A., & Ledesma, A. (1996). Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM9414. Bioresource Technology, 57, 13–18.

    Article  CAS  Google Scholar 

  8. Gutierrez-Correa, M., & Tengerdy, R. P. (1997). Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnology Letters, 19(7), 665–667.

    Article  CAS  Google Scholar 

  9. De-Paula, E. H., Ramos, L. P., & Azevedo, M. O. (1999). The potential of Humicola grisea var thermoida for bioconversion of sugar cane bagasse. Bioresource Technology, 68, 35–41.

    Article  CAS  Google Scholar 

  10. Singhania, R. R., Sukumaran, R. K., & Pandey, A. (2007). Improved cellulase production by T reesei RUT C30 under SSF through process optimization. Applied Biochemistry and Biotechnology, 142(1), 60–70.

    Article  CAS  Google Scholar 

  11. Herbert, D., Phipps, P. J., & Strange, P. E. (1971). Chemical analysis of microbial cells. Methods in Microbiology, 5B, 249–344.

    Google Scholar 

  12. Ghose, T. K. (1987). Measurement of cellulase activities. Pure & Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  13. Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2, 455–475.

    Article  Google Scholar 

  14. Von Sivers, M., & Zacci, G. (1995). A techno-economical comparison of three processes for the production of ethanol. Bioresource Technology, 51, 43–52.

    Article  Google Scholar 

  15. Raimbault, M. (1998). General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology [online], 1(3). Retrieved August 28, 2001 from http://www.ejbiotechnology.info/content/vol1/ issue3/full/9/9.PDF. ISSN 0717-3458.

  16. Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Solid-state fermentation for the production of industrial enzymes. Current Science, 77, 149–152.

    CAS  Google Scholar 

  17. Reczey, K., Szengyel, Z. S., Eklund, R., & Zacchi, G. (1996). Cellulase production by T. reesei. Bioresource Technology, 57, 25–30.

    Article  CAS  Google Scholar 

  18. Gutierrez-Correa, M., Portala, L., Moreno, P., & Tengerdy, R. P. (1999). Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresource Technology, 68, 173–178.

    Article  CAS  Google Scholar 

  19. Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., & Zupancic, S. (1996). Production of fungal xylanases. Bioresource Technology, 58, 137–161.

    Article  CAS  Google Scholar 

  20. Suh, D. H., Becker, T. C., Sands, J. A., & Montenecourt, B. S. (1988). Effects of temperature on xylanase secretion by Trichoderma reesei. Biotechnology Bioengineering, 32, 821–825.

    Article  CAS  Google Scholar 

  21. Merivuori, H., Tornkvist, M., & Sands, J. (1990). Different temperature profiles of enzyme secretion by two common strains of Trichoderma reesei. Biotechnology Letters, 12, 117–120.

    Article  CAS  Google Scholar 

  22. Mandels, M., & Reese, E. T. (1960). Induction of cellulase in fungi by cellobiose. Journal Bacteriology, 79(6), 816–826.

    CAS  Google Scholar 

  23. Kubicek, C. P., & Penttila, M. E. (1998). Regulation of production of plant, polysaccharide degrading enzymes by Trichoderma. In E. Harman, C. P. (Eds.), Trichoderma and Gliocladium, vol 2G (pp 49–72). London: Taylor & Francis.

  24. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorious, I. S. (2002). Microbial cellulase utilization: Fundamentals and biotechnology. Microbiology Molecular Biology Review, 66, 506–577.

    Article  CAS  Google Scholar 

  25. Allen, U. A. L., & Mortensen, R. E. (1981). Production of cellulase from Trichoderma reesei in fed-batch fermentation from soluble carbon sources. Biotechnology Bioengineering, 23, 2641–2645.

    Article  CAS  Google Scholar 

  26. Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases—Production, applications and challenges. Journal of Scientific and Industrial Research, 64, 832–844.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Council of Scientific and Industrial Research, Govt. of India for the research grant on project CMM013 which funded this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Sukumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mekala, N.K., Singhania, R.R., Sukumaran, R.K. et al. Cellulase Production Under Solid-State Fermentation by Trichoderma reesei RUT C30: Statistical Optimization of Process Parameters. Appl Biochem Biotechnol 151, 122–131 (2008). https://doi.org/10.1007/s12010-008-8156-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8156-9

Keywords

Navigation