Skip to main content
Log in

Statistical Optimization of Alpha-Amylase Production with Immobilized Cells of Streptomyces erumpens MTCC 7317 in Luffa cylindrica L. Sponge Discs

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this investigation was to study the effect of Streptomyces erumpens cells immobilized in various matrices, i.e., agar–agar, polyacrylamide, and luffa (Luffa cylindrica L.) sponge for production of α-amylase. Luffa sponge was found to be 21% and 51% more effective in enzyme yield than agar–agar and polyacrylamide, respectively. Response surface methodology was used to evaluate the effect of three main variables, i.e., incubation period, pH, and temperature on enzyme production with immobilized luffa cells. The experimental results showed that the optimum incubation period, pH, and temperature were 36h, 6.0, and 50 °C, respectively. The repeated batch fermentation of immobilized cells in shake flasks showed that S. erumpens cells were more or less equally physiologically active on the support even after three cycles of fermentation (3,830–3,575 units). The application of S. erumpens crude enzyme in liquefying cassava starch was studied. The maximum hydrolysis of cassava starch (85%) was obtained with the application of 4ml (15,200 units) of crude enzyme after 5 h of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Demirijan, D., Moris-Varas, F., & Cassidy, C. (2001). Current Opinion in Chemical Biology, 5, 144–151.

    Article  Google Scholar 

  2. Haki, G. D., & Rakshit, S. K. (2003). Bioresearch and Technology, 89, 17–34.

    Article  CAS  Google Scholar 

  3. Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Biotechnology and Applied Biochemistry, 31, 135–152.

    Article  CAS  Google Scholar 

  4. Adinarayana, K., Jyothi, B., & Ellaiah, P. (2005). AAPS PharmaSciTech, 6, 391–397.

    Article  Google Scholar 

  5. Marques, L. L. M., Buzato, J. B., & Celligoi, M. A. P. C. (2006). Brazilian Archives of Biology and Technology, 49, 873–880.

    Article  CAS  Google Scholar 

  6. Carvalho, W., Silva, S. S., Converti, A., & Vitolo, M. (2002). Biotechnology and Bioengineering, 79, 165–169.

    Article  CAS  Google Scholar 

  7. Bodalo, A., Bastida, J., Gomez, J. L., Alcarz, I., & Asaza, M. L. (1996). Enzyme and Microbial Technology, 9, 176–180.

    Article  Google Scholar 

  8. John, R. P., Nampoothiri, K. M., & Pandey, A. (2007). Journal of Basic Microbiology, 47, 25–30.

    Article  CAS  Google Scholar 

  9. Swain, M. R., Kar, S., Sahoo, A. K., & Ray, R. C. (2007). Microbiological Research, 162, 93–98.

    Article  CAS  Google Scholar 

  10. Kochhar, S. L. (1995). Economic botany in tropics. New Delhi: Rajiv Beri, Macmillan India Ltd.

    Google Scholar 

  11. Akhtar, N., Iqbal, J., & Iqbal, M. (2003). Letters in Applied Microbiology, 37, 149–153.

    Article  CAS  Google Scholar 

  12. Saeed, A., & Iqbal, M. (2006). World Journal of Microbiology & Biotechnology, 22, 775–782.

    Article  CAS  Google Scholar 

  13. Liew, S. L., Ariff, A. B., Raha, A. R., & Ho, Y. W. (2005). International Journal of Food Microbiology, 102, 137–142.

    Article  CAS  Google Scholar 

  14. Xiong, C., Shouwen, C., Ming, S., & Ziniu, Y. (2005). Applied Microbiology and Biotechnology, 69, 390–396.

    Article  CAS  Google Scholar 

  15. Carvalho, J. C. M., Vitolo, M., Sato, S., & Aquarone, E. (2003). Applied Biochemistry and Biotechnology, 110, 151–164.

    Article  CAS  Google Scholar 

  16. Rao, J. L. M., & Satyanarayana, T. (2003). Journal of Applied Microbiology, 95, 712–718.

    Article  CAS  Google Scholar 

  17. Swain, M. R., & Ray, R. C. (2007). Journal of Basic Microbiology, 47, 417–425.

    Article  CAS  Google Scholar 

  18. Kar, S., & Ray, R. C. (2008). Journal of Scientific and Industrial Research, 67, 58–64.

    CAS  Google Scholar 

  19. Silva, C. J. S. M., & Roberto, I. C. (2001). Process Biochemistry, 36, 1119–1124.

    Article  CAS  Google Scholar 

  20. Swain, M. R., Kar, S., Padmaja, G., & Ray, R. C. (2006). Polish Journal of Microbiology, 55, 289–296.

    CAS  Google Scholar 

  21. Bashay, U. (2003). African Journal of Biotechnology, 2, 60–65.

    Google Scholar 

  22. Adinarayana, K., Bapi Raju, K. V. V. S. N., & Ellaiah, P. (2004). Process Biochemistry, 39, 1331–1339.

    Article  CAS  Google Scholar 

  23. Dobreva, E., Tonkova, A., Ivanova, V., Stfanova, M., Kabivanova, L., & Spasova, D. (1998). Journal of Industrial Microbiology, 20, 166–170.

    Article  CAS  Google Scholar 

  24. Stefanova, M., Tonkova, A., Dobreva, E., & Spasova, D. (1998). Folia Microbiologica, 43, 42–46.

    Article  CAS  Google Scholar 

  25. Slokoska, L., & Angelova, M. (1998). Zeitschrift für Naturforschung, 53, 968–972.

    CAS  Google Scholar 

  26. Demir, N., Acar, J., Saryoolu, K., & Muttu, M. (2001). Journal of Food Engineering, 47, 275–280.

    Article  Google Scholar 

  27. Iqbal, M., Saeed, A., Edyvean, R. G. J., O’sullivan, B., & Styring, P. (2005). Biotechnology Letters, 27, 1319–1323.

    Article  CAS  Google Scholar 

  28. Ogbonna, J. C., Tomiyama, S., Liu, Y. C., & Tanaka, H. (1997). Journal of Bioengineering, 84, 271–274.

    Article  CAS  Google Scholar 

  29. Yang, S. S., & Wang, J. Y. (1999). Botanical Bulletin of Academia Sinica, 40, 259–265.

    CAS  Google Scholar 

  30. Dey, S., & Agarwal, S. O. (1999). Indian Journal of Biochemistry & Biophysics, 36, 150–157.

    CAS  Google Scholar 

  31. Najafi, M. F., Deobagkar, D., & Deobagkar, D. (2005). Protein Expression and Purification, 41, 349–354.

    Article  CAS  Google Scholar 

  32. Heese, O., Hansen, G., Hohne, W. E., & Korner, D. (1991). Biomedica Biochimica Acta, 5, 225–232.

    Google Scholar 

  33. Georis, J., Giannotta, F., De Buyl, E., Granier, B., & Frere, J. (2000). Enzyme and Microbial Technology, 26, 177–183.

    Article  Google Scholar 

  34. Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). Food Technology and Biotechnology, 44, 173–184.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Director, CTCRI, Thiruvanathapuram for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S., Swain, M.R. & Ray, R.C. Statistical Optimization of Alpha-Amylase Production with Immobilized Cells of Streptomyces erumpens MTCC 7317 in Luffa cylindrica L. Sponge Discs. Appl Biochem Biotechnol 152, 177–188 (2009). https://doi.org/10.1007/s12010-008-8248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8248-6

Keywords

Navigation