Skip to main content

Advertisement

Log in

Influence of High Solid Concentration on Enzymatic Hydrolysis and Fermentation of Steam-Exploded Corn Stover Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Steam-exploded corn stover biomass was used as the substrate for fed-batch separate enzymatic hydrolysis and fermentation (SHF) to investigate the solid concentration ranging from 10% to 30% (w/w) on the lignocellulose enzymatic hydrolysis and fermentation. The treatment of washing the steam-exploded material was also evaluated by experiments. The results showed that cellulose conversion changed little with increasing solid concentration, and fermentation by Saccharomyces cerevisiae revealed a nearly same ethanol yield with the water-washed steam-exploded corn stover. For the washed material at 30% substrate concentration, i.e., 30% water insoluble solids (WIS), enzymatic hydrolysis yielded 103.3 g/l glucose solution and a cellulose conversion of 72.5%, thus a high ethanol level up to 49.5 g/l. With the unwashed steam-exploded corn stover, though a cellulose conversion of 70.9% was obtained in hydrolysis at 30% solid concentration (27.9% WIS), its hydrolysate did not ferment at all, and the hydrolysate of 20% solid loading containing 3.3 g/l acetic acid and 145 mg/l furfural already exerted a strong inhibition on the fermentation and ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. Advances in Biochemical Engineering/Biotechnology, 108, 41–65.

    Article  CAS  Google Scholar 

  2. Varga, E., Klinke, H., Réczey, K., & Thomsen, A. B. (2004). High solids simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88, 567–574. doi:10.1002/bit.20222.

    Article  CAS  Google Scholar 

  3. Alexander, E., Farrell, D., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., et al. (2006). Ethanol can contribute to energy and environmental goals. Science, 311, 506–508. doi:10.1126/science.1121416.

    Article  Google Scholar 

  4. Öhgren, K., Rudolf, A., Galbe, M., & Zacchi, G. (2006). Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass and Bioenergy, 30, 863–869. doi:10.1016/j.biombioe.2006.02.002.

    Article  Google Scholar 

  5. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966. doi:10.1016/j.biortech.2005.01.010.

    Article  CAS  Google Scholar 

  6. Wingren, A., Galbe, M., & Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress, 19, 1109–1117. doi:10.1021/bp0340180.

    Article  CAS  Google Scholar 

  7. Torget, R., Walter, P. J., Himmel, M., & Grohmann, K. (1991). Dilute-acid pretreatment of corn residues and short rotation woody crops. Applied Biochemistry and Biotechnology, 28/29, 75–86.

    Article  Google Scholar 

  8. Schell, D. J., Walter, P. J., & Johnson, D. K. (1992). Dilute sulfuric acid pretreatment of corn stover at high solids concentrations. Applied Biochemistry and Biotechnology, 34/35, 659–665.

    Article  Google Scholar 

  9. Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18, 189–199. doi:10.1016/S0961-9534(99)00091-4.

    Article  CAS  Google Scholar 

  10. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., & Penner, M. H. (1997). Modelling and optimization of the diluted-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology, 59, 129–136. doi:10.1016/S0960-8524(97)81606-9.

    Article  CAS  Google Scholar 

  11. Kalman, G., Varga, E., & Reczey, K. (2002). Diluted sulphuric acid pretreatment of corn stover at long residence times. Chem Biochem Eng Q, 16, 151–157.

    CAS  Google Scholar 

  12. Bayrock, D. P., & Ingledew, W. M. (2001). Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. Journal of Industrial Microbiology & Biotechnology, 27, 87–93. doi:10.1038/sj.jim.7000167.

    Article  CAS  Google Scholar 

  13. Schell, D. (2005). 2005 OBP biennial peer review, energy efficiency and renewable energy. http://programreview.biomass.govtools.us/%5Cdocuments%5C11e80e62-6e8a-4858-a0e5-1fa75a591116.ppt

  14. Zacchi, G., & Axelsson, A. (1989). Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnology and Bioengineering, 34, 223–233. doi:10.1002/bit.260340211.

    Article  CAS  Google Scholar 

  15. Fan, Z. L., South, C., Lyford, K., Munsie, J., van Walsum, P., & Lynd, L. R. (2003). Conversion of paper sludge to ethanol in a semicontinuous solids-fedreactor. Bioprocess and Biosystems Engineering, 26, 93–101. doi:10.1007/s00449-003-0337-x.

    Article  CAS  Google Scholar 

  16. Rudolf, A., Alkasrawi, M., Zacchi, G., & Liden, G. (2005). A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme and Microbial Technology, 37, 195–204. doi:10.1016/j.enzmictec.2005.02.013.

    Article  CAS  Google Scholar 

  17. Varga, E., Klinke, H. B., Reczey, K., & Thomsen, A. B. (2004). High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88, 567–574. doi:10.1002/bit.20222.

    Article  CAS  Google Scholar 

  18. Wayman, M., Parekh, S., Chornet, E., & Overend, R. P. (1986). SO2-catalysed prehydrolysis of coniferous wood for ethanol production. Biotechnology Letters, 8, 749–752. doi:10.1007/BF01032576.

    Article  CAS  Google Scholar 

  19. Jørgensen, H., Vibe, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 96, 862–870. doi:10.1002/bit.21115.

    Article  Google Scholar 

  20. Tolan, J. S. (2002). Iogen’s process for producing ethanol from cellulosic biomass. Clean Technol Environ Policy, 3, 339–345. doi:10.1007/s10098-001-0131-x.

    Article  Google Scholar 

  21. Lu, Y., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Applied Biochemistry and Biotechnology, 98/100, 641–654. doi:10.1385/ABAB:98-100:1-9:641.

    Article  Google Scholar 

  22. Dien, B. S., Li, L., Iten, L. B., Jordan, D. B., Nichols, N. N., O’Bryan, P. J., et al. (2006). Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enzyme and Microbial Technology, 39, 1137–1144. doi:10.1016/j.enzmictec.2006.02.022.

    Article  CAS  Google Scholar 

  23. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26. doi:10.1007/s00253-004-1642-2.

    Article  CAS  Google Scholar 

  24. Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hagerdal, B. (1999). Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering, 63, 46–55. doi:10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J.

    Article  CAS  Google Scholar 

  25. National Renewable Energy Laboratory (NREL). Chemical analysis and testing laboratory analytical procedures, LAP-002 (1996), LAP-003 (1995), LAP-004 (1996), LAP-005 (1994), LAP-010 (1994) and LAP-017 (1998), NREL, Golden, CO, USA. http://www.eere.energy.gov/biomass/analytical_procedures.html.

  26. Öhgren, K., Bengtsson, O., Gorwa, M. F., Galbe, M., Hahn, B., & Zacchi, G. (2006). Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of Biotechnology, 126, 488–498. doi:10.1016/j.jbiotec.2006.05.001.

    Article  Google Scholar 

  27. Linde, M., Galbe, M., & Zacchi, G. (2007). Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme and Microbial Technology, 40, 1100–1107. doi:10.1016/j.enzmictec.2006.08.014.

    Article  CAS  Google Scholar 

  28. Kim, S. H., & Holtzapple, M. T. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology, 96, 1994–2006. doi:10.1016/j.biortech.2005.01.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program (973 Program 2007CB714303) and Shanghai Leading Academic Discipline Project B505. We thank COFCO Bio-energy (Zhaodong) Limited for supplying the steam-exploded corn stover material and Green Global Inc. for kindly providing the enzyme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Wang, Y., Xu, G. et al. Influence of High Solid Concentration on Enzymatic Hydrolysis and Fermentation of Steam-Exploded Corn Stover Biomass. Appl Biochem Biotechnol 160, 360–369 (2010). https://doi.org/10.1007/s12010-008-8306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8306-0

Keywords

Navigation