Skip to main content
Log in

Studies of Penicillin G Acylase Immobilization Using Highly Porous Cellulose-Based Polymeric Membrane

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The different ionic molecules/compounds were used as a ligand for the immobilization of penicillin G acylase on the highly porous cellulose-based polymeric membrane having buffer flux 1,746 LMH (L m−2 h−1) at 0.5 bar pressure. The immobilized enzyme activity around 250 UApp was obtained with the ligand such as proline, tryptophan, casein acid hydrolysate, and brilliant green. Comparatively, proline showed less IMY% (percentage immobilization yield—58) but higher RTA% (percentage of activity retention—71) and specific activity (145 UApp g−1). However, the crosslinked preparation of brilliant green obtained using glutaraldehyde showed 82 ± 2.7% immobilized enzyme activity after the completion of successive five cycles. In comparison with the free enzyme, the enzyme immobilized on the brilliant green coupled membrane showed around 2.4-fold increase in K m value (47.4 mM) as well as similar optimum pH (7.2) and temperature (40 °C). The immobilized enzyme retained almost 50% activity after 107 days and 50 cycles of operation. Almost 50% decrease in buffer flux after enzyme immobilization was observed. At the end of the 30 cycles, flux pattern shows around 38% decrease in buffer flux however, after 16 cycles of operation flux moves closer towards the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chandel, A. K., Rao, L. V., Narasu, M. L., & Singh, O. V. (2008). Enzyme and Microbial Technology, 42, 199–207.

    CAS  Google Scholar 

  2. León, D., Rivera-Pastrana, A., Medina-Rivero, D., Flores-Flores, E., Estrada-Baltazar, J., Ordóñez-Acevedo, A., et al. (2006). Biomolecular Engineering, 23, 299–305. doi:10.1016/j.bioeng.2006.09.003.

    Article  CAS  Google Scholar 

  3. Flores, G., Sobeŕon, X., & Osuna, J. (2004). Protein Science, 13, 1677–1683. doi:10.1110/ps.03436604.

    Article  CAS  Google Scholar 

  4. Duggleby, H. J., Tolley, S. P., Hill, C. P., Dodson, E. J., Dodson, G., & Moody, P. C. E. (1995). Nature, 373, 264–268. doi:10.1038/373264a0.

    Article  CAS  Google Scholar 

  5. Kallenberg, A. I., van Rantwijk, F., & Sheldona, R. A. (2005). Advanced Synthesis & Catalysis, 347, 905–926. doi:10.1002/adsc.200505042.

    Article  CAS  Google Scholar 

  6. Yongjun, L., Guanzhong, L., Yanqin, W., Yanglong, G., Yun, G., Zhigang, Z., et al. (2007). Advanced Functional Materials, 17, 2160–2166. doi:10.1002/adfm.200600505.

    Article  CAS  Google Scholar 

  7. Anming, W., Cheng, Z., Hua, W., Shubao, S., Jianyue, X., & Pingkai, O. (2007). Journal of Chemical Engineering (Chinese), 15, 788–790. doi:10.1016/S1004-9541(08)60003-8.

    Article  Google Scholar 

  8. Zuza, M. G., Siler-Marinkovic, S. S., & Knezevic, Z. D. (2007). Chem Ind And Chem Eng, 13, 205–210.

    Article  CAS  Google Scholar 

  9. Estruch, I., Tagliani, A. R., Guisan, J. M., Fernandez-Lafuente, R., Alcantara, A. R., Toma, L., et al. (2008). Enzyme and Microbial Technology, 42, 121–129. doi:10.1016/j.enzmictec.2007.08.013.

    Article  CAS  Google Scholar 

  10. Ping, X., Haifeng, L., & Jinhui, Y. (2008). Huagong Xuebao (Chinese), 59, 443–449.

    Google Scholar 

  11. Mohy Eldin, M. S., Bencivenga, U., Rossi, S., Canciglia, P., Gaeta, F. S., Tramper, J., et al. (2000). Journal of Molecular Catalysis B, Enzymatic, 8, 233–244. doi:10.1016/S1381-1177(99)00061-2.

    Article  CAS  Google Scholar 

  12. Ke-liang, G., Shu-wei, Y., Wei-qin, X., & Dong-zhi, W. (2007). Ziran Kexueban (Chinese), 33, 798–802.

    Google Scholar 

  13. Lee, W. N., Chang, I. S., Hwang, B. K., Park, P. K., Lee, C. H., & Huang, X. (2007). Process Biochemistry, 42, 655–661. doi:10.1016/j.procbio.2006.12.003.

    Article  CAS  Google Scholar 

  14. Cao, L., & Schmid, R. D. (2005). Carrier-bound Immobilized Enzymes: Principles. Wiley-VCH, Weinheim, Germany: Application and Design.

    Book  Google Scholar 

  15. Bomstein, J., & Evans, W. G. (1965). Analytical Chemistry, 37, 576–578. doi:10.1021/ac60223a034.

    Article  CAS  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  17. Adikane, H.V., Thakar, D.M., & Kharul, U.K.(2006) Indian Patent (0849/DELI/2006).

  18. Katchalski-Katzir, E., & Kraemer, D. M. (2000). Journal of Molecular Catalysis B, Enzymatic, 10, 157–176. doi:10.1016/S1381-1177(00)00124-7.

    Article  CAS  Google Scholar 

  19. Yu, H., Liu, G., Ye, Q., Chen, J., Yuan, J., & Zhang, N. (1988). Kangshengsu (Chinese), 13, 177–180.

  20. Braun, J., LeChanu, P., & Le Goffic, F. (1989). Biotechnology and Bioengineering, 33, 242–246. doi:10.1002/bit.260330217.

    Article  CAS  Google Scholar 

  21. Kraemer, D., Plainer, H., Sproessier, B., Uhlig, H., & Schnee, R.(1989) US Patent 4819439.

  22. Drobník, J., Saudek, V., Švec, F., Kálal, J., Vojtíek, V., & Bárta, M. (2004). Biotechnology and Bioengineering, 21, 1317–1332. doi:10.1002/bit.260210802.

    Article  Google Scholar 

  23. Bahulekar, R. V., Ponrathnam, S., Uphade, B. S., Ayyangar, N. R., Kumar, K. K., & Shewale, J. G. (1991). Biotechnology Techniques, 5, 401–404. doi:10.1007/BF00185023.

    Article  CAS  Google Scholar 

  24. Arakawa, T., Tsumoto, K., Kita, Y., Chang, B., & Ejima, D. (2007). Amino Acids, 33, 587–605. doi:10.1007/s00726-007-0506-3.

    Article  CAS  Google Scholar 

  25. Fortier, G., Demers, N., Jean-Fran, J., Jean-Charles, G., & D’Urso, E.M.(1996) in Methods in Biotechnology, vol. 1: Immobilization of Enzymes and Cells (Blckerstaff, G. F., ed.), Humana, Totowa, NJ, pp.117-123.

  26. Mohy Eldin, M. S., Schroën, C. G. P. H., Janssen, A. E. M., Mita, D. G., & Tramper, J. (2000). Journal of Molecular Catalysis B, Enzymatic, 10, 445–451. doi:10.1016/S1381-1177(99)00122-8.

    Article  CAS  Google Scholar 

  27. Hoa, L. F., Lia, S. Y., Lin, S. C., & Hsu, W. H. (2004). Process Biochemistry, 39, 1573–1581. doi:10.1016/S0032-9592(03)00288-7.

    Article  CAS  Google Scholar 

  28. Hsiao, H. Y., & Royer, G. P. (1979). Archives of Biochemistry and Biophysics, 198, 379–385. doi:10.1016/0003-9861(79)90510-1.

    Article  CAS  Google Scholar 

  29. Abbott, B. J., & Fukuda, D. S. (1975). Antimicrobial Agents and Chemotherapy, 8, 282–288.

    CAS  Google Scholar 

  30. Dilek, C. O., Dilek, K., & Altan, E. (2002). World Journal of Microbiology and Biotechnology, 18, 881–888.

    Article  Google Scholar 

  31. Haluk, E., Dilek, K. and Altan, E. (1997) Biotechnol. Tech.11, 225-229.

  32. Travascio, P., Zito, E., De Maio, A., Schroën, C. G. P. H., Durante, D., De Luca, P., et al. (2002). Biotechnology Bioengineering, 79, 334–346.

    Article  CAS  Google Scholar 

  33. Mohy Eldin, M. S., Portaccio, M., Diano, N., Rossi, S., Bencivenga, U., D’Uva, A., et al. (1999). Journal of Molecular Catalysis B, Enzymatic, 7, 251–261.

    Article  CAS  Google Scholar 

  34. Torres-Bacete, J., Arroyo, M., Torres-Guzmán, R., de la Mata, I., Castillón, M. P., & Acebal, C. (2000). Biotechnology Letters, 22, 1011–1014.

    Article  CAS  Google Scholar 

  35. Sudhakaran, V. K., & Shewale, J. G. (1993). World journal of Microbiology and Biotechnology, 9, 630–634.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are thankful for the financial support given by the DBT, New Delhi, India, to carry out membrane preparation work (BT/PR2937/PID/06/147/2002) and Director, NCL, Pune, India, for penicillin G acylase immobilization work (MLP008926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Adikane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adikane, H.V., Thakar, D.M. Studies of Penicillin G Acylase Immobilization Using Highly Porous Cellulose-Based Polymeric Membrane. Appl Biochem Biotechnol 160, 1130–1145 (2010). https://doi.org/10.1007/s12010-009-8686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8686-9

Keywords

Navigation