Skip to main content
Log in

Compositional Changes in Sugarcane Bagasse on Low Temperature, Long-term Diluted Ammonia Treatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse is the major by-product of the sugar industry. It has a great potential for the production of biofuels and chemicals due to its considerable amount of cellulose and hemicellulose. In this study, we investigated a simple and economic pretreatment process using dilute ammonia for the storage of sugarcane bagasse. Sugarcane bagasse was stored in 0, 0.03, and 0.3% (w/w) ammonium hydroxide in a closed bottle for 40 days at 30 °C under atmospheric pressure without any agitation or circulation. Samples were taken every 10 days and analyzed for changes on lignin, cellulose, hemicellulose composition, ammonia concentration, and microbial counts. Biomass storage for 40 days at 0.3% ammonium hydroxide removed 46% of lignin and retained 100% cellulose and 73% hemicellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kristensen, J. B., Thygesen, L. G., Felby, C., Jørgensen, H., & Elder, T. (2008). Biotechnology and Biofuels, 1, 1–9.

    Article  Google Scholar 

  2. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Bioresearch Technology, 74, 69–80.

    Article  CAS  Google Scholar 

  3. Duff, S. J. B. & Murray, W. D. (1996). Bioresource Technology, 55, 1–33.

    Article  CAS  Google Scholar 

  4. Wyman, C. E. (1999). Annual Review of Engineering Environment, 24, 189–226.

    Article  Google Scholar 

  5. Balat, M., Balat, H., & Öz, C. (2008). Progress of Energy Combined Science, 34, 551–573.

    Article  CAS  Google Scholar 

  6. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  7. Hamelinck, C. N., van Hooijdonk, G., & Faaij, A. P. C. (2005). Biomass and Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  8. Eggeman, T. & Elander, R. T. (2005). Bioresource Technology, 96, 2019–2025.

    Article  CAS  Google Scholar 

  9. Chen, Y., Sharma-Shivappa, R. R., & Chen, C. (2007). Applied Biochemistry and Biotechnology, 143, 80–92.

    Article  CAS  Google Scholar 

  10. Kaar, W. E. & Holtzapple, M. T. (2000). Biomass Bioenergy, 18, 189–1999.

    Article  CAS  Google Scholar 

  11. McMillan, J. D. (1997). Renewable Energy, 10, 295–302.

    Article  CAS  Google Scholar 

  12. Kim, T. H. (2004). PhD. Dissertation, Auburn University.

  13. Dale, B. E. & Moreira, M. J. (1982). Biotechnology and Bioengineering Symposium, 12, 31–44.

    CAS  Google Scholar 

  14. Kim, T. H. & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121/124, 1119–1131.

    Article  Google Scholar 

  15. Kim, T. H. & Lee, Y. Y. (2007). Applied Biochemistry and Biotechnology, 137/140, 81–92.

    Article  Google Scholar 

  16. Aita, G. M. & Stradi, B. (2007). PCT/US2009/033173.

  17. Kim, T. H., Taylor, F., & Hicks, K. B. (2008). Bioresource Technology, 99, 5694–5702.

    Article  CAS  Google Scholar 

  18. Holtzapple, M. T., Jun, J., Ashok, G., Patibandla, S. L., & Dale, B. E. (1991). Applied Biochemistry and Biotechnology, 28/29, 59–74.

    Article  Google Scholar 

  19. Reshamwala, S., Shawky, B. T., & Dale, B. E. (1995). Applied Biochemistry and Biotechnology, 51/52, 43–55.

    Article  CAS  Google Scholar 

  20. Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., & Latimer, V. M. (1996). Bioresearch Technology, 56, 111–116.

    Article  CAS  Google Scholar 

  21. Iyer, P. V., Wu, Z. W., Kim, S. B., & Lee, Y. Y. (1996). Applied Biochemistry and Biotechnology, 57/58, 121–132.

    Article  CAS  Google Scholar 

  22. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47.

    Article  CAS  Google Scholar 

  23. Yang, B. & Wyman, C. E. (2008). Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  24. Morris, P. J. & Mowat, D. N. (1980). Canadian Journal of Animal Science, 60, 327–336.

    Article  CAS  Google Scholar 

  25. Streeter, C. L. & Horn, G. W. (1982). Animal Feed Science and Technology, 7, 325–329.

    Article  CAS  Google Scholar 

  26. NREL (2008). Chemical analysis and testing standard procedures. Golden, CO: National Renewable Energy Laboratory.

    Google Scholar 

  27. Cotlear, C. B. G. (2004). PhD. Dissertation. Texas A&M University.

Download references

Acknowledgements

The authors would like to thank the US Department of Energy (Award no. DE-FG36-08GO88151) for their financial support of this research project. We also thank Victor Bazan for the preparation of composition analysis and Dr. Lee Madsen and Chardcie Verret for their assistance with chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donal F. Day.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Aita, G. & Day, D.F. Compositional Changes in Sugarcane Bagasse on Low Temperature, Long-term Diluted Ammonia Treatment. Appl Biochem Biotechnol 161, 34–40 (2010). https://doi.org/10.1007/s12010-009-8827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8827-1

Keywords

Navigation