Skip to main content
Log in

Evaluation of Methanogenic Activity of Biogas Plant Slurry for Monitoring Codigestion of Ossein Factory Wastes and Cyanobacterial Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Overall measurement of methanogenic activity of sludge and or slurry is thought as a key for understanding the basic physiology of anaerobic consortia involved in anaerobic digestion process of an alternative biomass. In this study, the methanogenic activity of biogas plant slurry was used to evaluate the anaerobic digestion of ossein factory wastes such as sinews and primary clarified bone waste (PCBW) and cyanobacterial biomass in standard assay conditions. A maximum methanogenic activity was reported here when ossein factory wastes mixed with cyanobacterial biomass in specific proportions in which sinews and PCBW alone also favored to a significant methane yield. Cyanobacterial biomass alone did not give a desirable methanogenic activity. Approximately 48% of total solids were destroyed from these wastes after 30 days. This study gives information on the use of these wastes with suitable proportions for taking an effort in a large-scale anaerobic digestion in an effective way of ossein factory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bejornsson, L., Murto, M., & Mattiasson, B. (2000). Applied and Environmental Microbiology, 54, 844–849.

    Google Scholar 

  2. Resch, C., Grasmug, M., Smeets, W., Braun, R., & Kirchmayr, R. (2006). Water Science and Technology, 53, 213–221.

    Article  CAS  Google Scholar 

  3. Tagawa, T., Takahasi, H., Sekiguchi, Y., Ohashi, A., & Harada, H. (2002). Water Science and Technology, 45, 225–230.

    CAS  Google Scholar 

  4. Celies-Garcia, M. L., Ramirez, F., Revah, S., Razo-Flores, E., & Monroy, O. (2004). Environment & Technology, 25, 1265–1275.

    Article  Google Scholar 

  5. Hutan, M., Mrafkova, L., Drtil, M., & Dergo, J. (1999). Chemical Papers, 53, 374–378.

    Google Scholar 

  6. Chandrakant, N. P., & Chellapandi, P. (2008). Electronic Journal of Environmental, Agricultural and Food Chemistry, 7, 3035–3046.

    Google Scholar 

  7. Novaes, R. F. V. (1986). Water Science and Technology, 18, 1–14.

    CAS  Google Scholar 

  8. Aguilar, A., Casas, C., & Lema, J. M. (1995). Water Research, 29, 505–509.

    Article  CAS  Google Scholar 

  9. Takiguchi, N., Kishino, M., Kuroda, A., Kato, J., & Ohtake, H. (2004). Journal of Bioscience and Bioengineering, 97, 365–368.

    CAS  Google Scholar 

  10. Jawed, M., & Tare, V. (1998). Water SA, 25, 345–350.

    Google Scholar 

  11. Agrawal, L. K., Harada, H., Tseng, G. I. C., & Okui, H. (1997). Journal of Fermentation and Bioengineering, 83, 185–190.

    Article  CAS  Google Scholar 

  12. James, A., Chernicharo, C. A. L., & Campos, C. M. M. (1990). Water Research, 24, 813–825.

    Article  CAS  Google Scholar 

  13. Harda, H., Uemura, S., & Momonoi, K. (1994). Water Research, 28, 355–367.

    Article  Google Scholar 

  14. Perle, M., Kimchie, S., & Shelef, G. (1995). Water Research, 29, 1549–1554.

    Article  CAS  Google Scholar 

  15. Inch, O., Anderson, G. K., & Kasapgil, B. (1995). Water Research, 29, 349–355.

    Article  Google Scholar 

  16. Stewart, J. M., Bhattacharya, S. K., Madura, R. L., Mason, S. H., & Schoberg, J. C. (1995). Water Research, 29, 2730–2738.

    Article  CAS  Google Scholar 

  17. Dolfing, J., & Bloemen, W. (1985). Journal of Microbiological Methods, 4, 1–12.

    Article  CAS  Google Scholar 

  18. Soto, M., Mendez, R., & Lema, J. M. (1993). Water Research, 27, 1361–1376.

    Article  CAS  Google Scholar 

  19. Grotenhuis, J. T. C., Kissel, J. C., Plugge, C. M., Stams, A. J. M., & Zehnder, A. J. B. (1991). Water Research, 25, 21–27.

    Article  CAS  Google Scholar 

  20. Hickey, R. F., & Goodwin, S. (1991). Journal of the Water Pollution Control Federation, 63, 398–406.

    CAS  Google Scholar 

  21. Chellapandi, P., Prabaharan, D., & Uma, L. (2008). EurAsian Journal of Biosciences, 2, 110–114.

    Google Scholar 

  22. Hurst, C., Crawford, R., Garland, J., Lipson, D., Mills, A., & Stetzenbach, L. (2003). Manual of environmental microbiology (2nd ed.). Washington: ASM Press.

    Google Scholar 

  23. Rippka, R., Deruelles, J. B., Waterbury, M., Herdna, M., & Stanier, R. Y. (1979). Journal of General Microbiology, 111, 1–61.

    Google Scholar 

  24. Kalavathy, D. F., Uma, L., & Subramanian, G. (2001). Indian Journal of Microbiology, 41, 319–320.

    Google Scholar 

  25. Gonzalez-Gil, G., Jansen, S., Zandvoort, M. H., & van Leeuwen, H. P. (2003). Biotechnology and Bioengineering, 82, 134–142.

    Article  CAS  Google Scholar 

  26. Preeti, R. P., & Seenayya, G. (1994). World Journal of Microbiology & Biotechnology, 10, 211–214.

    Article  Google Scholar 

  27. Raju, N. R., Sumithra Devi, S., & Krishna Nand. (1991). Biotechnology Letters, 13, 461.

    Article  CAS  Google Scholar 

  28. Jarvis, A., Nordberg, A., Jarlsvik, T., Mathisen, B., & Svensson, B. H. (1997). Biomass & Bioenergy, 12, 453–460.

    Article  CAS  Google Scholar 

  29. Alves, L. C., Cammarota, M. C., & De Franca, F. P. (2006). Environment & Technology, 27, 1391–1400.

    Article  Google Scholar 

  30. Chellapandi, P., Lahri, S. S., & Sivaramakrishnan, S. (2007). Biotechnology, An Indian Journal, 1, 19–24.

    Google Scholar 

  31. Lalitha, K., Swaminathan, K. R., & Bai, R. P. (1994). Applied Biochemistry and Biotechnology, 47, 73–87.

    Article  CAS  Google Scholar 

  32. Vieira, A. M., Bergamasco, R., Gimenes, M. L., Nakamura, C. V., & Dias Filho, B. P. (2001). Environmental Microbiology, 22(12), 1477–1485.

    CAS  Google Scholar 

  33. Ramasamy, I. R., & Pullammanmappallil, P. C. (2001). Biodegradation, 12, 247–257.

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author thanks Vice-Chancellor and Registrar of Gujarat Vidyapith, Ahmedabad, India for providing the study leave to carry out this investigation. Department of Biotechnology, India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chellapandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chellapandi, P., Prabaharan, D. & Uma, L. Evaluation of Methanogenic Activity of Biogas Plant Slurry for Monitoring Codigestion of Ossein Factory Wastes and Cyanobacterial Biomass. Appl Biochem Biotechnol 162, 524–535 (2010). https://doi.org/10.1007/s12010-009-8834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8834-2

Keywords

Navigation