Skip to main content
Log in

Effect of Internal Diffusional Restrictions on the Hydrolysis of Penicillin G: Reactor Performance and Specific Productivity of 6-APA with Immobilized Penicillin Acylase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A mathematical model that describes the heterogeneous reaction–diffusion process involved in penicillin G hydrolysis in a batch reactor with immobilized penicillin G acylase is presented. The reaction system includes the bulk liquid phase containing the dissolved substrate (and products) and the solid biocatalyst phase represented by glyoxyl-agarose spherical porous particles carrying the enzyme. The equations consider reaction and diffusion components that are presented in dimensionless form. This is a complex reaction system in which both products of reaction and the substrate itself are inhibitors. The simulation of a batch reactor performance with immobilized penicillin G acylase is presented and discussed for the internal diffusional restrictions impact on effectiveness and productivity. Increasing internal diffusional restrictions, through increasing catalyst particle size and enzyme loading, causes impaired catalyst efficiency expressed in a reduction of effectiveness factor and specific productivity. High penicillin G initial concentrations decrease the impact of internal diffusional restrictions by increasing the mass transfer towards porous catalyst until product inhibition becomes significant over approximately 50 mM of initial penicillin G, where a drop in conversion rate and a maximum in specific productivity are then obtained. Results highlight the relevance of considering internal diffusional restrictions, reactor performance, and productivity analysis for proper catalyst and reactor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Total catalyst surface area

D e :

Penicillin G effective diffusion coefficient

D e1 :

PAA-effective diffusion coefficient

D e2 :

APA-effective diffusion coefficient

E :

Catalyst enzyme concentration

E R :

Reactor enzyme concentration

k :

Reaction rate constant

K :

Michaelis constant for penicillin G

K 1 :

Competitive product inhibition constant for PAA

K 2 :

Non-competitive product inhibition constant for APA

K S :

Uncompetitive inhibition constant for penicillin G

p :

Dimensionless PAA concentration

P 1 :

PAA concentration

P 1b :

Bulk PAA concentration

P 2 :

APA concentration

P 2b :

Bulk APA concentration

q :

Dimensionless APA concentration

Q p :

Volumetric productivity

Q pe :

Specific productivity

r :

Variable radius inside the catalyst particle

R :

Catalyst particle radius

S :

Substrate concentration inside catalyst

s :

Dimensionless substrate concentration

S b :

Bulk substrate concentration

S b0 :

Initial bulk substrate concentration

t :

Reaction time

T :

Characteristic time (R 2/D e)

v :

Reaction rate

V b :

Bulk volume of liquid phase

V c :

Total volume of catalyst particles in reactor

γ :

Liquid to catalyst volume ratio: V b /A ∙ R or V b /3 ∙ V c

η :

Effectiveness factor

η′:

Overall effectiveness factor

ρ :

Dimensionless radius (r/R)

σ :

Dimensionless reaction rate

τ :

Dimensionless reaction time

Φ:

Thiele modulus for Penicillin G

Φ1 :

Thiele modulus for PAA

Φ2 :

Thiele modulus for APA

References

  1. Mateo, C., Abián, O., Bernedo, M., Cuenca, E., Fuentes, M., Fernández-Lorente, G., et al. (2005). Enzyme and Microbial Technology, 37, 456–462.

    Article  CAS  Google Scholar 

  2. Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F., et al. (2006). Enzyme and Microbial Technology, 39, 274–280.

    Article  CAS  Google Scholar 

  3. Illanes, A., & Wilson, L. (2003). Critical Reviews in Biotechnology, 23, 61–93.

    Article  CAS  Google Scholar 

  4. Shuler, M., Aris, R., & Tsuchiya, H. (1972). Journal of Theoretical Biology, 35, 67–76.

    Article  CAS  Google Scholar 

  5. Engasser, J., & Horvath, C. (1973). Journal of Theoretical Biology, 42, 137–155.

    Article  CAS  Google Scholar 

  6. Al-Muftah, A., & Abu-Reesh, I. (2005). Biochemical Engineering Journal, 23, 139–153.

    Article  CAS  Google Scholar 

  7. Illanes, A. (2008). Enzyme biocatalysis: Principles and applications. London: Springer.

    Google Scholar 

  8. Li, X., Chen, X., & Chen, N. (2004). Biochemical Engineering Journal, 17, 65–69.

    Article  CAS  Google Scholar 

  9. Kheirolomoom, A., Khorasheh, F., & Fazelinia, H. (2002). Journal of Bioscience and Bioengineering, 93, 125–129.

    Article  CAS  Google Scholar 

  10. Van Roon, J. L., Arntz, M. M. H. D., Kallenberg, A. I., x Paasman, A. I., Tramper, J., Schroën, C. G. H. P., et al. (2006). Applied Microbiology and Biotechnology, 72, 263–278.

    Article  Google Scholar 

  11. Illanes, A., & Wilson, L. (2006). Chimica Oggi/Chemicals Today, 24, 27–30.

    Google Scholar 

  12. Kheirolomoom, A., Ardjmand, M., Fazelinia, H., & Zakeri, A. (2001). Process Biochemistry, 36, 1095–1101.

    Article  CAS  Google Scholar 

  13. Balasingham, K., Warburton, D., Dunill, P., & Lilly, M. D. (1972). Biochimica et Biophysica Acta Enzymology, 276, 250–256.

    Article  CAS  Google Scholar 

  14. Warburton, D., Dunnill, P., & Lilly, M. (1973). Biotechnology and Bioengineering, 15, 13–25.

    Article  CAS  Google Scholar 

  15. Lee, S. B., & Ryu, D. (1982). Enzyme and Microbial Technology, 4, 35–38.

    Article  CAS  Google Scholar 

  16. Valencia, P., Flores, S., Wilson, L., & Illanes, A. (2010). Biochemical Engineering Journal, 49, 256–263.

    Article  CAS  Google Scholar 

  17. Guisán, J. M., Alvaro, G., Rosell, C., & Fernandez-Lafuente, R. (1994). Biotechnology and Applied Biochemistry, 20, 357–369.

    Google Scholar 

  18. Ospina, S., López-Mungia, A., González, R., & Quintero, R. (1992). Journal of Chemical Technology and Biotechnology, 53, 205–213.

    CAS  Google Scholar 

  19. Shewale, J., & Sivaraman, H. (1989). Process Biochemistry, 24, 146–154.

    CAS  Google Scholar 

Download references

Acknowledgements

Work funded by Chilean Fondecyt Project 1080122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Valencia.

Appendix

Appendix

Simulation was done by solving Eqs. 2224 and 3234. Dimensionless equations were discretized using Crank–Nicolson method to achieve stability during solution processing in computer programs. The number of equations depends on N obtaining N + 1 equations for each substance. In this study, N = 20 was used obtaining a system of 63 equations. Algebraic form of discretized equations are as follows:For j = 0:

$$ - \frac{3}{2}{s_0} + 2{s_1} - \frac{1}{2}{s_2} = 0 $$
$$ - \frac{3}{2}{p_0} + 2{p_1} - \frac{1}{2}{p_2} = 0 $$
$$ - \frac{3}{2}{q_0} + 2{q_1} - \frac{1}{2}{q_2} = 0 $$

For j = 1,…, N −1:

$$ s_j^{{n + 1}} - \frac{{\Delta \tau }}{{2{{(\Delta \rho )}^2}}}\left( {\left[ {1 - \frac{1}{j}} \right]s_{{j - 1}}^{{n + 1}} - 2s_j^{{n + 1}} + \left[ {1 + \frac{1}{j}} \right]s_{{j + 1}}^{{n + 1}}} \right) = s_j^n + \frac{{\Delta \tau }}{{2{{(\Delta \rho )}^2}}}\left( {\left[ {1 - \frac{1}{j}} \right]s_{{j - 1}}^n - 2s_j^n + \left[ {1 + \frac{1}{j}} \right]s_{{j + 1}}^n} \right) - \Delta \tau {\Phi^2}\sigma_j^n $$
$$ p_j^{{n + 1}} - \frac{{{D_{{e1}}}\Delta \tau }}{{2{{(\Delta \rho )}^2}}}\left( {\left[ {1 - \frac{1}{j}} \right]p_{{j - 1}}^{{n + 1}} - 2p_j^{{n + 1}} + \left[ {1 + \frac{1}{j}} \right]p_{{j + 1}}^{{n + 1}}} \right) = p_j^n + \frac{{{D_{{e1}}}\Delta \tau }}{{2{{(\Delta \rho )}^2}}}\left( {\left[ {1 - \frac{1}{j}} \right]p_{{j - 1}}^n - 2p_j^n + \left[ {1 + \frac{1}{j}} \right]p_{{j + 1}}^n} \right) - \Delta \tau \Phi_1^2\sigma_j^n $$
$$ q_j^{{n + 1}} - \frac{{{D_{{e2}}}\Delta \tau }}{{2{{(\Delta \rho )}^2}}}\left( {\left[ {1 - \frac{1}{j}} \right]q_{{j - 1}}^{{n + 1}} - 2q_j^{{n + 1}} + \left[ {1 + \frac{1}{j}} \right]q_{{j + 1}}^{{n + 1}}} \right) = q_j^n + \frac{{{D_{{e2}}}\Delta \tau }}{{2{{(\Delta \rho )}^2}}}\left( {\left[ {1 - \frac{1}{j}} \right]q_{{j - 1}}^n - 2q_j^n + \left[ {1 + \frac{1}{j}} \right]q_{{j + 1}}^n} \right) - \Delta \tau \Phi_2^2\sigma_j^n $$

For j = N:

$$ s_N^{{n + 1}} + \frac{{\Delta \tau }}{{2\gamma \Delta \rho }}\left( { - \frac{1}{2}s_{{N - 2}}^{{n + 1}} + 2s_{{N - 1}}^{{n + 1}} - \frac{3}{2}s_N^{{n + 1}}} \right) = s_N^n - \frac{{\Delta \tau }}{{2\gamma \Delta \rho }}\left( { - \frac{1}{2}s_{{N - 2}}^n + 2s_{{N - 1}}^n - \frac{3}{2}s_N^n} \right) $$
$$ p_N^{{n + 1}} + \frac{{{D_{{e1}}}\Delta \tau }}{{2\gamma \Delta \rho }}\left( { - \frac{1}{2}p_{{N - 2}}^{{n + 1}} + 2p_{{N - 1}}^{{n + 1}} - \frac{3}{2}p_N^{{n + 1}}} \right) = p_N^n - \frac{{{D_{{e1}}}\Delta \tau }}{{2\gamma \Delta \rho }}\left( { - \frac{1}{2}p_{{N - 2}}^n + 2p_{{N - 1}}^n - \frac{3}{2}p_N^n} \right) $$
$$ q_N^{{n + 1}} + \frac{{{D_{{e2}}}\Delta \tau }}{{2\gamma \Delta \rho }}\left( { - \frac{1}{2}q_{{N - 2}}^{{n + 1}} + 2q_{{N - 1}}^{{n + 1}} - \frac{3}{2}q_N^{{n + 1}}} \right) = q_N^n - \frac{{{D_{{e2}}}\Delta \tau }}{{2\gamma \Delta \rho }}\left( { - \frac{1}{2}q_{{N - 2}}^n + 2q_{{N - 1}}^n - \frac{3}{2}q_N^n} \right) $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, P., Flores, S., Wilson, L. et al. Effect of Internal Diffusional Restrictions on the Hydrolysis of Penicillin G: Reactor Performance and Specific Productivity of 6-APA with Immobilized Penicillin Acylase. Appl Biochem Biotechnol 165, 426–441 (2011). https://doi.org/10.1007/s12010-011-9262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9262-7

Keywords

Navigation