Skip to main content
Log in

Selective n-Butanol Production by Clostridium sp. MTButOH1365 During Continuous Synthesis Gas Fermentation Due to Expression of Synthetic Thiolase, 3-Hydroxy Butyryl-CoA Dehydrogenase, Crotonase, Butyryl-CoA Dehydrogenase, Butyraldehyde Dehydrogenase, and NAD-Dependent Butanol Dehydrogenase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60 % CO and 40 % H2 in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Demain, A. L. (2009). Biosolutions to the energy problem. Journal of Industrial Microbiology and Biotechnology, 36(3), 319–332.

    Article  CAS  Google Scholar 

  2. Köpke, M., Michalcea, C., Liew, F.-M., Tizard, J. H., Ali, M. S., Conolly, J. J., et al. (2011). 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Applied and Environmental Microbiology, 77(15), 5467–5475.

    Article  Google Scholar 

  3. Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 10(6), 295–304.

    Article  CAS  Google Scholar 

  4. Drake, H. L. (1994). Acetogenesis. NY, London: Chapman & Hall.

    Google Scholar 

  5. Gaddy, J. L., Arora, D. D., Ko, C.-W., Phillips, J. R., Basu, R., Wikstrom, C. V., et al. (2001). Methods for increasing the production of ethanol from microbial fermentation. US Patent 7,285,402.

  6. Köpke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., et al. (2010). Clostridium ljungdahlii represents a microbial production platform based on syngas. Proceedings of the National Academy of Sciences, 107(29), 13087–13092.

    Article  Google Scholar 

  7. Berzin, V., Kiriukhin, M., & Tyurin, M. (2012). Elimination of acetate production to improve ethanol yield during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MTEtOH550. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-012-9697-5.

  8. Savage, N. (2011). Fuel options: The ideal biofuel. Nature, 474(7352), S9–S11.

    Article  CAS  Google Scholar 

  9. Grady, M. C., Jahic, M., & Patnalk, R. (2009). Method for producing butanol using two-phase extractive fermentation. Patent publication No.: US 2009/0305370A1.

  10. Tyurin, M., Kiriukhin, M., & Berzin, V. (2012). Electrofusion of untreated cells of the newly isolated acetogen Clostridium sp. MT351 with integrated in the chromosome erm(B) or cat leading to the combined presence of these antibiotic resistance genes in the chromosome of the electrofusion products. Journal of Biotechnology Research, 4, 1–12.

    CAS  Google Scholar 

  11. Leibig, M., Krismer, B., Kolb, M., Friede, A., Götz, F., & Bertram, R. (2008). Marker removal in staphylococci via Cre recombinase and different lox sites. Applied and Environmental Microbiology, 74(5), 1316–1323.

    Article  CAS  Google Scholar 

  12. Tanner, R. S., Miller, L. M., & Yang, D. (1993). Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. International Journal of Systemic Bacteriology, 43(2), 232–236.

    Article  CAS  Google Scholar 

  13. Bürgmann, H., Widmer, F., Sigler, W. V., & Zeyer, J. (2003). mRNA extraction and RT-PCR protocol for detection of nifH gene expression of Azotobacter vinelandii in soil. Applied and Environmental Microbiology, 69(4), 1928–1935.

    Article  Google Scholar 

  14. Ross, S. M. (2000). Introduction to probability and statistics for engineers and scientists (2nd ed.). San Diego: Academic, Inc. 464 P.

    Google Scholar 

  15. Li, S. Y., Srivastava, R., Suib, S. L., Li, Y., & Parnas, R. S. (2011). Performance of batch, fedbatch, and continuous A–B–E fermentation with pH-control. Bioresource Technology, 102(5), 4241–4250.

    Article  CAS  Google Scholar 

  16. Qureshi, N., Saha, B. C., & Cotta, M. A. (2007). Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosystems Engineeering, 30(6), 419–427.

    Article  CAS  Google Scholar 

  17. Zhou, H., Su, I., Chen, X., & Wan, Y. (2011). Separation of acetone, butanol and ethanol (ABE) from dilute aqueous solutions by silicalite-1/PDMS hybrid pervaporation membranes. Separation and Purification Technology, 79(3), 375–384.

    Article  CAS  Google Scholar 

  18. Bankar, S. B., Survase, S. A., Singhal, R. S., & Gransröm, T. (2012). Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresource Technology, 106, 110–116.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported solely by the funds of Syngas Biofuels Energy, Inc. Syngas Biofuels Energy, Inc. is the distributor of the electroporation and electrofusion equipment used in this project. Please visit our website for more information: www.syngasbiofuelsenergy.com.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tyurin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berzin, V., Tyurin, M. & Kiriukhin, M. Selective n-Butanol Production by Clostridium sp. MTButOH1365 During Continuous Synthesis Gas Fermentation Due to Expression of Synthetic Thiolase, 3-Hydroxy Butyryl-CoA Dehydrogenase, Crotonase, Butyryl-CoA Dehydrogenase, Butyraldehyde Dehydrogenase, and NAD-Dependent Butanol Dehydrogenase. Appl Biochem Biotechnol 169, 950–959 (2013). https://doi.org/10.1007/s12010-012-0060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0060-7

Keywords

Navigation