Skip to main content
Log in

2.45 GHz Microwave Irradiation-Induced Oxidative Stress Affects Implantation or Pregnancy in Mice, Mus musculus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present experiment was designed to study the 2.45 GHz low-level microwave (MW) irradiation-induced stress response and its effect on implantation or pregnancy in female mice. Twelve-week-old mice were exposed to MW radiation (continuous wave for 2 h/day for 45 days, frequency 2.45 GHz, power density = 0.033549 mW/cm2, and specific absorption rate = 0.023023 W/kg). At the end of a total of 45 days of exposure, mice were sacrificed, implantation sites were monitored, blood was processed to study stress parameters (hemoglobin, RBC and WBC count, and neutrophil/lymphocyte (N/L) ratio), the brain was processed for comet assay, and plasma was used for nitric oxide (NO), progesterone and estradiol estimation. Reactive oxygen species (ROS) and the activities of ROS-scavenging enzymes— superoxide dismutase, catalase, and glutathione peroxidase—were determined in the liver, kidney and ovary. We observed that implantation sites were affected significantly in MW-irradiated mice as compared to control. Further, in addition to a significant increase in ROS, hemoglobin (p < 0.001), RBC and WBC counts (p < 0.001), N/L ratio (p < 0.01), DNA damage (p < 0.001) in brain cells, and plasma estradiol concentration (p < 0.05), a significant decrease was observed in NO level (p < 0.05) and antioxidant enzyme activities of MW-exposed mice. Our findings led us to conclude that a low level of MW irradiation-induced oxidative stress not only suppresses implantation, but it may also lead to deformity of the embryo in case pregnancy continues. We also suggest that MW radiation-induced oxidative stress by increasing ROS production in the body may lead to DNA strand breakage in the brain cells and implantation failure/resorption or abnormal pregnancy in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stuchley, M. A. (1988). Biological effects of radiofrequency fields. In: M.H. Repacholi (Ed.) Non-ionizing radiations, physical characterization, biological effects and health hazard assessment. Proceedings for the International Non-Ionizing Radiation workshop, Melbourne, 197–217.

  2. Lai, H., Carino, M. A., Horita, A., & Guy, A. W. (1993). Effects of a 60 Hz magnetic field on central cholinergic system of the rat. Bioelectromagnetics, 14, 5–15.

    Article  CAS  Google Scholar 

  3. Lokhmatova, S. A. (1994). The effect of low-intensity prolonged impulse electromagnetic irradiation in the UHF range on the testis and the appendages of the testis in rats. Radiation Biology and Radioecology, 34, 279–285.

    CAS  Google Scholar 

  4. Akdag, M. Z., Celik, M. S., Ketani, A., Nergiz, Y., Deniz, M., & Dsadag, S. (1999). Effect of chronic low intensity microwave radiation on sperm count, sperm morphology and testicular and epididymal tissues of rat. Electro- and Magnetobiology, 18, 133–145.

    Google Scholar 

  5. Hardell, L., Mild, K. H., & Carlberg, M. (2003). Further aspects on cellular and cordless telephones and brain tumours. International Journal of Oncology, 22, 399–407.

    Google Scholar 

  6. Heynick, L. N., Johnston, S. A., Patrick, A., & Mason, P. A. (2003). Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity. Bioelectromagnetics, 24, s74–s100.

    Article  Google Scholar 

  7. Paulraj, R., & Behari, J. (2004). Radiofrequency radiation effect on protein kinase C activity in rats’ brain. Mutation Research, 545, 127–130.

    Article  CAS  Google Scholar 

  8. Agarwal, A., Deepinder, F., Sharma, R. K., Ranga, G., & Li, J. (2008). Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertility and Sterility, 89, 124–128.

    Article  Google Scholar 

  9. Cleveland, R. F., & Ulcek, J. L. (1999). Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fields. OET Bulletin, 56, 1–36.

    Google Scholar 

  10. Fukui, Y., Hoshino, K., Inouye, M., & Kameyama, Y. (1992). Effects of hyperthermia induced by the microwave irradiation on the brain development in mice. Journal of Radiation Research, 33, 1–10.

    Article  CAS  Google Scholar 

  11. Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research/Fundamental and Molecular Mutagenesis, 596, 76–80.

    Article  CAS  Google Scholar 

  12. Kesari, K. K., Behari, J., & Kumar, S. (2010). Mutagenic response of 2.45 GHz radiation exposure on rat brain. International Journal of Radiation Biology, 86(4), 334–343.

    Article  CAS  Google Scholar 

  13. Saunders, R. D., & Kowalczuk, C. I. (1981). Effects of 2.45 GHz microwave radiation and heat on mouse spermatogenic epithelium. International Journal of Radiation Biology, 40(6), 623–632.

    Article  CAS  Google Scholar 

  14. Kim, J. Y., Kim, H. T., Moon, K. H., & Shin, H. J. (2007). Long-term exposure of rats to a 2.45 GHz electromagnetic field: effects on reproductive function. Korean Journal of Urology, 48(12), 1308–1314.

    Article  Google Scholar 

  15. Kesari, K. K., & Behari, J. (2010). Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicological and Environmental Chemistry, 92(6), 1135–1147.

    Article  CAS  Google Scholar 

  16. Galvin, M. J., MacNichols, G. L., & McRee, D. I. (1984). Effect of 2450 MHz microwave radiation on haematopoiesis of pregnant mice. Radiation Research, 100, 412–417.

    Article  CAS  Google Scholar 

  17. Trosic, I., & Busljeta, I. (2005). Frequency of micronucleated erythrocytes in rat bone marrow exposed to 2.4 5GHz radiation. Physica Scripta, T118, 168–170.

    Article  CAS  Google Scholar 

  18. World Health Organization (2011). World Health Organization/International Agency for Research on Cancer classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. 31 May.ScienceDaily. http://www.sciencedaily.com

  19. Luria, R., Eliyahu, I., Hareuveny, R., Margaliot, M., & Meiran, N. (2009). Cognitive effects of radiation emitted by cellular phones: the influence of exposure side and time. Bioelectromagnetics, 3, 198–204.

    Article  Google Scholar 

  20. Hardell, L., Carlberg, M., & Hansson, M. K. (2009). Epidemiological evidence for an association between use of wireless phones and tumor diseases. Pathophysiology, 16, 113–122.

    Article  Google Scholar 

  21. Hardell, L., Carlberg, M., & Hansson, M. K. (2011). Pooled analysis of case–control studies on malignant brain tumours and the use of mobile and cordless phones including living and deceased subjects. International Journal of Oncology, 38(5), 1465–1474.

    Article  Google Scholar 

  22. Pryor, W. A., Houk, K. N., Foote, C. S., Fukuto, J. M., Ignarro, L. J., Squadrito, G. H., et al. (2006). Free radical biology and medicine: it’s a gas, man! American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 291, R491–R511.

    Article  CAS  Google Scholar 

  23. Eriksson, U. J. (1999). Oxidative DNA damage and embryo development. Nature Medicine, 5, 715.

    Article  CAS  Google Scholar 

  24. Baker, M. A., & Aitken, R. J. (2005). Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reproductive Biology and Endocrinology, 3, 67.

    Article  Google Scholar 

  25. Palacio, J. R., Iborra, A., Ulcova-Gallova, Z., Badia, R., & Martinez, P. (2006). The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients. Clinical and Experimental Immunology, 144, 217–222.

    Article  CAS  Google Scholar 

  26. Liu, H., Zhang, C., & Zeng, W. (2006). Estrogenic and antioxidant effects of a phytoestrogen daidzein on ovarian germ cells in embryonic chickens. Domestic Animal Endocrinology, 31, 258–268.

    Article  Google Scholar 

  27. Takahashi, T., Takahashi, E., Igarashi, H., Tezuka, N., & Kurachi, H. (2003). Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Molecular Reproduction and Development, 66, 143–152.

    Article  CAS  Google Scholar 

  28. Kodaman, P. H., & Behrman, H. R. (2001). Endocrine-regulated and protein kinase C-dependent generation of superoxide by rat preovulatory follicles. Endocrinology, 142, 687–693.

    Article  CAS  Google Scholar 

  29. Dincer, Y., Akcay, T., Erdem, T., Saygili, I. E., & Gundogdu, S. (2005). DNA damage, DNA susceptibility to oxidation and glutathione level in women with polycystic ovary syndrome. Scandinavian Journal of Clinical and Laboratory Investigation, 65, 721–728.

    Article  CAS  Google Scholar 

  30. Guerin, P. E., Mouatassim, S., & Menezo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7, 175–189.

    Article  CAS  Google Scholar 

  31. Conrad, K. P., Joffe, G. M., Kruszyna, H., et al. (1993). Identification of increased nitric oxide biosynthesis during pregnancy in rats. The FASEB Journal, 7, 566–571.

    CAS  Google Scholar 

  32. Beckman, J. S., & Crow, J. P. (1993). Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochemical Society Transactions, 21, 330–334.

    CAS  Google Scholar 

  33. Davies, M. G., Fulton, G. J., & Hagen, P. O. (1995). Clinical biology of nitric oxide. British Journal of Surgery, 82, 1598–1610.

    Article  CAS  Google Scholar 

  34. Akaike, T., Suga, M., & Maeda, H. (1998). Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proceedings of the Society for Experimental Biology and Medicine, 217, 64–73.

    CAS  Google Scholar 

  35. Turko, I. V., & Murad, F. (2002). Protein nitration in cardiovascular diseases. Pharmacological Reviews, 54, 619–634.

    Article  CAS  Google Scholar 

  36. Kelly, R. A., Balligand, J. L., & Smith, T. N. (1996). Nitric oxide and cardiac function. Circulation Research, 79, 363–380.

    Article  CAS  Google Scholar 

  37. Cameron, I. T., & Campbell, S. (1998). Nitric oxide in the endometrium. Human Reproduction Update, 4, 565–569.

    Article  CAS  Google Scholar 

  38. Rollwitz, J., Lupke, M., & Simko, M. (2004). Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages [J]. Biochimica et Biophysica Acta, 1674(3), 231–238.

    Article  CAS  Google Scholar 

  39. Ciejka, E., Kleniewska, P., Skibska, B., & Goraca, A. (2011). Effects of extremely low frequency magnetic field on oxidative balance in brain of rats. Journal of Physiology and Pharmacology, 62(6), 657–661.

    CAS  Google Scholar 

  40. Rugh, R., Ginns, E. I., Ho, H. S., & Leachw, M. (1975). Responses of the mouse to microwave radiation during estrous cycle and pregnancy. Radiation Research, 62, 225–241.

    Article  CAS  Google Scholar 

  41. Nawrot, P. S., McRee, D. I., & Staples, R. E. (1981). Effects of 2.45 GHz CW microwave radiation on embryofetal development in mice. Teratology, 24(3), 303–314.

    Article  CAS  Google Scholar 

  42. Nakamura, H., Matsuzaki, I., Hatta, K., Nobukuni, Y., Kambayashi, Y., & Ogino, K. (2003). Nonthermal effects of mobile-phone frequency microwaves on uteroplacental functions in pregnant rats. Reproductive Toxicology, 17, 321–326.

    Article  CAS  Google Scholar 

  43. Inouye, M., Galvin, M. J., McRee, D. I., & Matsumoto, N. (1982). Lack of effect of 2.45-GHz microwave radiation on the development of preimplantation embryos of mice. Bioelectromagnetics, 3, 275–283.

    Article  CAS  Google Scholar 

  44. Jensh, R. P., Weinberg, I., & Brent, R. L. (1983). An evaluation of the teratogenic potential of protracted exposure of pregnant rats to 2450–MHz microwave radiation: I. Morphologic analysis at term. Journal of Toxicology and Environmental Health, 11, 23–35.

    Article  CAS  Google Scholar 

  45. Sambucci, M., Laudisi, F., Nasta, F., Pinto, R., Lodato, R., Altavista, P., et al. (2010). Prenatal exposure to non-ionizing radiation: effects of WiFi signals on pregnancy outcome, peripheral B-cell compartment and antibody production. Radiation Research, 174, 732–740.

    Article  CAS  Google Scholar 

  46. Singh, V. P., Singh, P., Shukla, R. K., Dhawan, A., Gangwar, R. K., Singh, S. P., et al. (2009). 2.45 GHz low level CW microwave radiation affects embryo implantation sites and single strand DNA damage in brain cell of mice, Mus musculus. In: Proceedings of 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems (ELECTRO-2009) from IEEE Explore, 22–24 pp 379–382.

  47. Chaturvedi, C. M., Singh, V. P., Singh, P., Basu, P., Singaravel, M., Shukla, R. K., et al. (2011). 2.45 GHz (CW) Microwave irradiation alters circadian organization, spatial memory, DNA structure in the brain cells and blood cell counts of male mice, Mus musculus. Progress in Electromagnetics Research B, 29, 23–42.

    Article  Google Scholar 

  48. Hartmann, A., Agurell, E., Beevers, C., Brendler-Schwaab, S., Burlinson, B., Clay, P., et al. (2003). Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis, 18, 45–51.

    Article  CAS  Google Scholar 

  49. Patel, S., Pandey, A. K., Bajpayee, M., Parmar, D., & Dhawan, A. (2006). Cypermethrin-induced DNA damage in organs and tissues of the mouse: evidence from the comet assay. Mutation Research, 607, 176–183.

    Article  CAS  Google Scholar 

  50. Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191.

    Article  CAS  Google Scholar 

  51. Sastry, K. V., Moudgal, R. P., Mohan, J., Tyagi, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper. Analytical Biochemistry, 306, 79–82.

    Article  CAS  Google Scholar 

  52. Bejma, J., Ramires, P., & Ji, L. L. (2000). Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver. Acta Physiologica Scandinavica, 169, 343–351.

    Article  CAS  Google Scholar 

  53. Das, K., Samanta, L., & Chainy, G. B. N. (2000). A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian Journal of Biochemistry & Biophysics, 37, 201–204.

    CAS  Google Scholar 

  54. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121.

    Article  CAS  Google Scholar 

  55. Mantha, S. V., Prasad, M., Kalra, J., & Prasad, K. (1993). Atherosclerosis, 101, 135–144.

    Article  CAS  Google Scholar 

  56. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  57. Sun, Y., Elwell, J. H., & Oberley, L. W. (1988). A simultaneous visualization of the antioxidant enzymes glutathione peroxidase and catalase on polyacrylamide gels. Free Radical Research Communications, 5, 67–75.

    Article  CAS  Google Scholar 

  58. Lin, C. L., Chen, H. J., & Hou, W. C. (2002). Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecylsulfate polyacrylamide gels. Electrophoresis, 23, 513–516.

    Article  CAS  Google Scholar 

  59. Lee, G. M., Neutra, R. R., Hristova, L., Yost, M., & Hiatt, R. A. (2002). A nested case–control study of residential and personal magnetic field measures and miscarriages. Epidemiology, 13(1), 21–31.

    Article  Google Scholar 

  60. Li, D. K., Odouli, R., Wi, S., Janevic, T., Golditch, I., Bracken, T. D., et al. (2002). A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage. Epidemiology, 13(1), 9–20.

    Article  Google Scholar 

  61. Ouellet-Hellstrom, R., & Stewart, W. F. (1993). Miscarriages among female physical therapists who report using radio- and microwave-frequency electromagnetic radiation. American Journal of Epidemiology, 138(10), 775–786.

    CAS  Google Scholar 

  62. Frahm, J., Mattsson, M. O., & Simko, M. (2010). Exposure to ELF magnetic fields modulates redox related protein expression in mouse macrophages. Toxicology Letters, 192, 330–336.

    Article  CAS  Google Scholar 

  63. Lai, H., & Singh, N. P. (1996). Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. International Journal of Radiation Biology, 69, 513–521.

    Article  CAS  Google Scholar 

  64. Regoli, F., Gorbi, S., Machelle, N., Tedesco, S., Benedetti, M., Bocchetti, R., et al. (2005). Prooxidant effects of extremely low frequency electromagnetic fields in the land snail Helix aspersa. Free Radical Biology & Medicine, 39, 1620.

    Article  CAS  Google Scholar 

  65. Agarwal, A., Gupta, S., & Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology, 3, 28.

    Article  Google Scholar 

  66. Mouatassim, S. E., Guerin, P., & Menezo, Y. (1999). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Molecular Human Reproduction, 5, 720–725.

    Article  CAS  Google Scholar 

  67. Carbone, M. C., Tatone, C., DelleMonache, S., Marci, R., Caserta, D., Colonna, R., et al. (2003). Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes. Molecular Human Reproduction, 9, 639–643.

    Article  CAS  Google Scholar 

  68. Stone, J. R., & Yang, S. (2006). Hydrogen peroxide: a signaling messenger. Antioxidants & Redox Signaling, 8, 243–270.

    Article  CAS  Google Scholar 

  69. Passos, J. F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., et al. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biology, 5, 110.

    Article  Google Scholar 

  70. Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W., & Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Human Reproduction, 13, 998–1002.

    Article  CAS  Google Scholar 

  71. Cook, J. P., & Tsao, P. S. (1993). Cytoprotective effects of nitric oxide. Circulation, 88, 2451–2454.

    Article  Google Scholar 

  72. Gardner, D. K., & Lane, M. (1996). Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Human Reproduction, 11, 2703–2712.

    Article  CAS  Google Scholar 

  73. Van Soom, A., Yuan, Y. Q., Peelman, L. J., de Matos, D. G., Dewulf, J., Laevens, H., et al. (2002). Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology, 57, 1453–1465.

    Article  Google Scholar 

  74. Khurana, N. K., & Wales, R. G. (1989). Effects of oxygen concentration on the metabolism of [U-14C] glucose by mouse morulae and early blastocysts in vitro. Reproduction, Fertility, and Development, 1, 99–106.

    Article  CAS  Google Scholar 

  75. Du, Z. F., & Wales, R. G. (1993). Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations. Reproduction, Fertility, and Development, 5, 383–393.

    Article  CAS  Google Scholar 

  76. Choi, J. W., Im, M. W., Pai, S. H. (2002). Nitric oxide production increases during normal pregnancy and decreases in preeclampsia. Annals of Clinical & Laboratory Science, 32(3).

  77. Yang, D., Lang, U., Greenberg, S. G., Myatt, L., & Clark, K. E. (1996). Elevation of nitrate levels in pregnant ewes and their fetuses. American Journal of Obstetrics and Gynecology, 174, 573–577.

    Google Scholar 

  78. Gray, R. H., & Becker, S. (2000). Selected topics in the epidemiology of reproductive outcomes. Epidemiologic Reviews, 22, 71–75.

    Article  CAS  Google Scholar 

  79. Tarin, J. J. (1995). Aetiology of age-associated aneuploidy: a mechanism based on the ‘free radical theory of ageing’. Molecular Human Reproduction, 10, 1563–1565.

    Article  CAS  Google Scholar 

  80. Porter, T. F., & Scott, J. R. (2005). Evidence-based care of recurrent miscarriage. Best Practice & Research. Clinical Obstetrics & Gynaecology, 19, 85–101.

    Article  Google Scholar 

  81. Diskin, M. G., & Morris, D. G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reproduction in Domestic Animals, 43(Suppl. 2), 260–267.

    Article  Google Scholar 

  82. Harman, D. (1988). Free radical theory of aging: an update: increasing the functional life span. Annals of the New York Academy of Sciences, 1067, 10–21.

    Article  Google Scholar 

  83. Jenkins, C., Wilson, R., Roberts, J., Miller, H., McKillop, J. H., & Walker, J. J. (2000). Antioxidants: their role in pregnancy and miscarriage. Antioxidants & Redox Signaling, 2, 623ox.

    Article  Google Scholar 

  84. Alikani, M., Dale, B. (1995). Should fragmenting blastomeres stay together? Alpha, September 1–2.

  85. Nasr-Esfahani, M. H., Aitken, J. R., & Johnson, M. H. (1990). Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development, 109, 501–507.

    CAS  Google Scholar 

  86. Nasr-Esfahani, M. H., & Johnson, M. H. (1992). Quantitative analysis of cellular glutathione in early preimplantation mouse embryos developing in vivo and in vitro. Human Reproduction, 7, 1281–1290.

    CAS  Google Scholar 

  87. Orsi, N. M., & Leese, H. J. (2001). Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Molecular Reproduction and Development, 59, 44–53.

    Article  CAS  Google Scholar 

  88. Fröhlich, H. (1981). The biological effects of microwaves and related questions. Advances in Electronics and Electron Physics, 53, 85–152.

    Article  Google Scholar 

  89. Lerner, E. J. (Contributing Editor) (1984). Biological effects of electromagnetic fields. IEEE spectrum, 57–69.

Download references

Acknowledgments

This work was funded by a research grant (5/10/FR/13/2010-RHN) from the Indian Council of Medical Research, New Delhi, India to CMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Mohini Chaturvedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahin, S., Singh, V.P., Shukla, R.K. et al. 2.45 GHz Microwave Irradiation-Induced Oxidative Stress Affects Implantation or Pregnancy in Mice, Mus musculus . Appl Biochem Biotechnol 169, 1727–1751 (2013). https://doi.org/10.1007/s12010-012-0079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0079-9

Keywords

Navigation