Skip to main content
Log in

Pretreatment for Simultaneous Production of Total Lipids and Fermentable Sugars from Marine Alga, Chlorella sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The goal of this study was to determine the optimal pretreatment process for the extraction of lipids and reducing sugars to facilitate the simultaneous production of biodiesel and bioethanol from the marine microalga Chorella sp. With a single pretreatment process, the optimal ultrasonication pretreatment process was 10 min at 47 KHz, and extraction yields of 6.5 and 7.1 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. The optimal microwave pretreatment process was 10 min at 2,450 MHz, and extraction yields of 6.6 and 7.0 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. Lastly, the optimal high-pressure homogenization pretreatment process was two cycles at a pressure of 20,000 psi, and extraction yields of 12.5 and 12.8 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. However, because the single pretreatment processes did not markedly improve the extraction yields compared to the results of previous studies, a combination of two pretreatment processes was applied. The yields of lipids and reducing sugars from the combined application of the high-pressure homogenization process and the microwave process were 24.4 and 24.9 % (w/w), respectively, which was up to three times greater than the yields obtained using the single pretreatment processes. Furthermore, the oleic acid content, which is a fatty acid suitable for biodiesel production, was 23.39 % of the fatty acids (w/w). The contents of glucose and xylose, which are among the fermentable sugars useful for bioethanol production, were 77.5 and 13.3 % (w/w) of the fermentable sugars, respectively, suggesting the possibility of simultaneously producing biodiesel and bioethanol. Based on the results of this study, the combined application of the high-pressure homogenization and microwave pretreatment processes is the optimal method to increase the extraction yields of lipids and reducing sugars that are essential for the simultaneous production of biodiesel and bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production—current state of the art and challenges. Journal of Industrial Microbiology & Biotechnology, 35, 421–430.

    Article  CAS  Google Scholar 

  2. Saulnier, L., Marot, C., Chanliaud, E., & Thibault, J. F. (1995). Cell wall polysaccharide interaction in maize bran. Carbohydrate Polymers, 26, 279–287.

    Article  CAS  Google Scholar 

  3. Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 126–131.

    Article  CAS  Google Scholar 

  4. Minowa, T., Yokoyama, S. Y., Kishimoto, M., & Okakurat, T. (1995). Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, 74, 1735–1738.

    Article  CAS  Google Scholar 

  5. Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., & Oh, H. M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresourse Technology, 101, 75–77.

    Article  Google Scholar 

  6. Folch, J., Lees, M., & Sloane, S. G. H. (1956). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226, 497–509.

    Google Scholar 

  7. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  8. Choi, S. P., Nguyen, M. T., & Sim, S. J. (2010). Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology, 101, 5330–5336.

    Article  CAS  Google Scholar 

  9. Yamada, T., & Sakaguchi, K. (1982). Comparative studies on Chlorella cell walls: induction of protoplast formation. Archives of Microbiology, 132, 10–13.

    Article  Google Scholar 

  10. Allard, B., & Templier, J. (2000). Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry, 54, 369–380.

    Article  CAS  Google Scholar 

  11. Atkinson, A. W., Gunning, B. E. S., & John, P. C. L. (1972). Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta, 107, 1–32.

    Article  CAS  Google Scholar 

  12. Wiltshire, K. H., Boersma, M., Möller, A., & Buhtz, H. (2000). Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquatic Ecology, 34, 119–126.

    Article  CAS  Google Scholar 

  13. Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry, 15, 898–902.

    Article  CAS  Google Scholar 

  14. Lee, S. J., Yoon, B. D., & Oh, H. M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12, 553–556.

    Article  CAS  Google Scholar 

  15. Geciova, J., Bury, D., & Jelen, P. (2002). Methods for disruption of microbial cells for potential use in the dairy industry—a review. International Dairy Journal, 12, 541–553.

    Article  CAS  Google Scholar 

  16. Raman, G., & Gaikar, V. G. (2002). Extraction of peperine from Piper nigrum (black pepper) by hydrotropic solubilization. Industrial and Engineering Chemistry Research, 41, 2966–2976.

    Article  CAS  Google Scholar 

  17. Diaz, M. J., Cara, C., Ruiz, E., Romero, I., Moya, M., & Castro, E. (2010). Hydrothermal pre-treatment of rapeseed straw. Bioresource Technology, 101, 2428–2435.

    Article  CAS  Google Scholar 

  18. Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrate. In W. L. Smith & M. H. Chanley (Eds.), Culture of marine invertebrates animals (pp. 296–360). New York: Plenum.

    Google Scholar 

  19. Tan, W., & Hogan, G. D. (1998). Dry weight and N partitioning in relation to substrate N supply, internal N status and developmental stage in jack pine (Pinus banksiana Lamb.) Seedlings, implications for modelling. Annals of Botany, 81, 195–201.

    Google Scholar 

  20. Iverson, S. J., Lang, S. L. C., & Cooper, M. H. (2001). Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36, 1283–1287.

    Article  CAS  Google Scholar 

  21. Han, J. G., Oh, S. H., Jeong, M. H., Seo, H. B., Jeong, K. H., & Lee, H. Y. (2010). Enhancement of saccharification yield of Ulva pertusa Kjellman for ethanol production through high temperature liquefaction process. The Korean Society for Biotechnology and Bioengineering, 25, 245–362.

    Google Scholar 

  22. Yoo, C., Jun, S. Y., Lee, J. Y., Ahn, C. Y., & Oh, H. M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101, S71–S74.

    Article  CAS  Google Scholar 

  23. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  24. Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88, 3402–3410.

    Article  CAS  Google Scholar 

  25. Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A., & Texeira, J. A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88, 3331–3335.

    Article  CAS  Google Scholar 

  26. Ho, S. H., Chen, W. M., & Chang, J. S. (2010). Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 101, 8725–8730.

    Article  CAS  Google Scholar 

  27. Illmana, A. M., Scragga, A. H., & Shalesa, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.

    Article  Google Scholar 

  28. Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21, 493–507.

    Article  CAS  Google Scholar 

  29. Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53, 150–154.

    Article  CAS  Google Scholar 

  30. Choi, W. Y., Lee, C. G., Ahn, J. H., Seo, Y. C., Lee, S. E., Jung, K. H., et al. (2011). Enhancement of saccharification yield of Ulva pertusa Kjellman by high pressure homogenization process for bioethanol production. The Korean Society for Biotechnology and Bioengineering, 26, 400–406.

    Google Scholar 

  31. Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., & Oh, H. M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101, s75–s77.

    Article  CAS  Google Scholar 

  32. Hopkins, T. (1991). Purification and analysis of recombinant proteins. In: Seetharam R and Sharma SK (Eds). New York: Marcel Dekker, Inc.

  33. Ann, M. J. D., & Chris, W. M. (2006). High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Critical Reviews in Microbiology, 32, 201–216.

    Article  Google Scholar 

  34. Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342–348.

    Article  CAS  Google Scholar 

  35. Scarsella, M., Parisi, M. P., D’Urso, A., De Filippis, P., Opoka, J., & Bravi, M. (2009). Achievements and perspectives in hetero- and mixotrophic culturing of microalgae. Chemical Engineering Transactions, 17, 1065–1070.

    Google Scholar 

  36. Kim, N. Y., Oh, S. H., Choi, W. Y., Lee, H. Y., & Lee, S. Y. (2010). Optimization of lipid extraction from Scenedesmus sp. using taguchi approach. The Korean Society for Biotechnology and Bioengineering, 25, 371–378.

    Google Scholar 

  37. Cho, S. C., Choi, W. Y., Oh, S. H., Lee, C. G., Seo, Y. C., Kim, J. S., Song, C. H., Kim, G. V., Lee, S. Y., Kang, D. H., & Lee, H. Y. (2012) Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. Journal of Biomedicine and Biotechnology, 2012, 6.

  38. Choi, W. Y., Lee, C. G., Song, C. H., Seo, Y. C., Kim, J. S., Kim, B. H., et al. (2012). Comparison of low molecular ginsenoside contents and CO2 emission from low quality fresh ginseng by low CO2 emission processes. Food Engineering Progress, 4, 325–332.

    Google Scholar 

  39. Cristina, L., & Timothy, J. M. (2010). Microwave and ultrasonic processing: Now a realistic option for industry. Chemical Engineering and Processing: Process Intensification, 49, 885–900.

    Article  Google Scholar 

  40. Ji, J., Wang, J., Li, Y., Yu, Y., & Xu, Z. (2006). Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics, 44, 411–414.

    Article  Google Scholar 

  41. Knothe, G. (2008). “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22, 1358–1364.

    Article  CAS  Google Scholar 

  42. Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    Article  CAS  Google Scholar 

  43. Li, X., Xu, H., & Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98, 764–771.

    Article  CAS  Google Scholar 

  44. Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y., & Chen, F. (2011). Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology, 102, 106–110.

    Article  CAS  Google Scholar 

  45. Rashid, U., Anwar, F., Moser, B. R., & Knothe, G. (2008). Moringa oleifera oil: a possible source of biodiesel. Bioresource Technology, 99, 8175–8179.

    Article  CAS  Google Scholar 

  46. Yeon, K. H., & Hong, W. H. (2000). Biodiesel production technology and its fuel properties. The Korean Journal of Chemical Engineering, 45, 424–432.

    Google Scholar 

  47. Khan, S. A., Rashmi, Hussain, M. Z., Prasad, S., Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13, 2361–2372

  48. Xu, H., Miao, X., & Wu, Q. (2011). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507.

    Article  Google Scholar 

  49. Zhou, N., Zhang, Y., Wu, X., Gong, X., & Wang, Q. (2011). Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technology, 102, 10158–10161.

    Article  CAS  Google Scholar 

  50. Lee, M. G., Cho, D. H., Kim, Y. H., Lee, J. W., Lee, J. H., Kim, S. W., et al. (2009). Effect of biomass-derived inhibitors on ethanol production. The Korean Society for Biotechnology and Bioengineering, 24, 439–445.

    Google Scholar 

  51. Cho, D. H., & Kim, Y. H. (2009). Evaluation of biological and physico-chemical detoxification methods for the removal of inhibitors in lignocellulose hydrolysate. The Korean Society for Biotechnology and Bioengineering, 24, 415–419.

    Google Scholar 

  52. Harun, R., & Danquah, M. K. (2011). Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 46, 304–309.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Technology Development for Bioenergy Production from Marine Biomass Funded by Ministry of Land, Transport and Maritime Affairs of Korean Government (PM57210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-Yong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CG., Kang, DH., Lee, DB. et al. Pretreatment for Simultaneous Production of Total Lipids and Fermentable Sugars from Marine Alga, Chlorella sp.. Appl Biochem Biotechnol 171, 1143–1158 (2013). https://doi.org/10.1007/s12010-013-0295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0295-y

Keywords

Navigation