Skip to main content
Log in

Purification and Characterization of Novel Halo-Acid-Alkali-Thermo-stable Xylanase from Gracilibacillus sp. TSCPVG

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An aerobic xylanolytic moderately halophilic and alkali-tolerant bacterium, Gracilibacillus sp. TSCPVG, produces multiple xylanases of unusual halo-acid-alkali-thermo-stable nature. The purification of a major xylanase from TSCPVG culture supernatant was achieved by hydrophobic and gel permeation chromatographic methods followed by electroelution from preparatory PAGE. The molecular mass of the purified xylanase was 42 kDa, as analyzed by SDS-PAGE, with a pI value of 6.1. It exhibited maximal activity in 3.5 % NaCl and retained over 75 % of its activity across the broad salinity range of 0–30 % NaCl, indicating a high halo-tolerance. It showed maximal activity at pH 7.5 and had retained 63 % of its activity at pH 5.0 and 73 % at pH 10.5, signifying the tolerance to broad acid to alkaline conditions. With birchwood xylan as a substrate, K m and specific activity values were 21 mg/ml and 1,667 U/mg, respectively. It is an endoxylanase that degrades xylan to xylose and xylobiose and had no activity on p-nitrophenyl-β-d-xylopyranoside, p-nitrophenyl-β-d-glucopyranoside, p-nitrophenyl acetate, carboxymethylcellulose, and filter paper. Since it showed remarkable stability over different salinities, broad pH, and temperature ranges, it is promising for application in many industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mortimer, J. C., Miles, G. P., Brown, D. M., Zhang, Z. N., Segura, M. P., Weimar, T., et al. (2010). Proceedings of the National Academy of Sciences of the United States of America, 107, 17409–17414.

    Article  CAS  Google Scholar 

  2. Kim, D. Y., Han, M. K., Lee, J. S., Oh, H.-W., Park, D.-S., Shin, D.-H., et al. (2009). Process Biochemistry, 44, 1055–1059.

    Article  CAS  Google Scholar 

  3. Chen, X., Vega-Sánchez, M. E., Verhertbruggen, Y., Chiniquy, D., Canlas, P. E., Fagerström, A., et al. (2012). Molecular Plant, 6, 570–573.

    Article  Google Scholar 

  4. Ahmed, S., Riaz, S., & Jamil, A. (2009). Applied Microbiology and Biotechnology, 84, 19–35.

    Article  CAS  Google Scholar 

  5. Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Bioresource Technology, 98, 504–510.

    Article  CAS  Google Scholar 

  6. Zhang, G. M., Huang, J., Huang, G. R., Ma, L. X., & Zhang, X. E. (2007). Applied Microbiology and Biotechnology, 74, 339–346.

    Article  CAS  Google Scholar 

  7. Wang, K., Luo, H., Tian, J., Turunen, O., Huang, H., Shi, P., et al. (2014). Applied and Environmental Microbiology, 80, 2158–2165.

    Article  CAS  Google Scholar 

  8. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  9. St. John, F. J., Gonzalez, J. M., & Pozharski, E. (2010). FEBS Letters, 584, 4435–4441.

    Article  CAS  Google Scholar 

  10. Lenartovicz, V., Souza, C. G. M., Moreira, F. G., & Peralta, R. M. (2002). Journal of Basic Microbiology, 42, 388–395.

    Article  CAS  Google Scholar 

  11. Carmona, E. C., Fialho, M. B., Buchgnani, E. B., Coelho, G. D., Brocheto-Braga, M. R., & Jorge, J. A. (2005). Process Biochemistry, 40, 359–364.

    Article  CAS  Google Scholar 

  12. Tachaapaikoon, C., Kyu, K. L., & Ratanakhanokchai, K. (2006). Process Biochemistry, 41, 2441–2445.

    Article  CAS  Google Scholar 

  13. Dhillon, A., Gupta, J. K., & Khanna, S. (2000). Process Biochemistry, 35, 849–856.

    Article  CAS  Google Scholar 

  14. Merchant, R., Merchant, F., & Margaritis, A. (1988). Biotechnology Letters, 10, 513–516.

    Article  CAS  Google Scholar 

  15. Zheng, H., Liu, Y., Sun, M., Han, Y., Wang, J., Sun, J., et al. (2014). Journal of Industrial Microbiology and Biotechnology, 41, 153–162.

    Article  CAS  Google Scholar 

  16. Wejse, P. L., Ingvorsen, K., & Mortensen, K. K. (2003). Extremophiles, 7, 423–431.

    Article  CAS  Google Scholar 

  17. Waino, M., & Ingvorsen, K. (2003). Extremophiles, 7, 87–93.

    CAS  Google Scholar 

  18. Wejse, P. L., Ingvorsen, K., & Mortensen, K. K. (2003). Enzyme and Microbial Technology, 32, 721–727.

    Article  CAS  Google Scholar 

  19. Prakash, S., Veeranagouda, Y., Kyoung, L., & Sreeramulu, K. (2009). World Journal of Microbiology and Biotechnology, 25, 197–204.

    Article  CAS  Google Scholar 

  20. Giridhar, P. V., & Chandra, T. S. (2010). Process Biochemistry, 45, 1730–1737.

    Article  CAS  Google Scholar 

  21. Wang, C. Y., Chan, H., Lin, H. T., & Shyu, Y. T. (2010). Annals of Applied Biology, 156, 187–197.

    Article  CAS  Google Scholar 

  22. Hung, K. S., Liu, S. M., Tzou, W. S., Lin, F. P., Pan, C. L., Fang, T. Y., et al. (2011). Process Biochemistry, 46, 1257–1263.

    Article  CAS  Google Scholar 

  23. Menon, G., Mody, K., Keshri, J., & Jha, B. (2010). Biotechnology and Bioprocess Engineering, 15, 998–1005.

    Article  CAS  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. C., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  25. Sa-Pereira, P., Duarte, J., & Costa-Ferreira, M. (2000). Enzyme and Microbial Technology, 27, 95–99.

    Article  CAS  Google Scholar 

  26. Laemmli, U. K. (1970). Nature (London), 227, 680–685.

    Article  CAS  Google Scholar 

  27. Breccia, J. D., Baigori, M. D., Castro, G. R., & Sineriz, F. (1995). Biotechnology Techniques, 9, 145–148.

    Article  CAS  Google Scholar 

  28. Shrinivas, D., Savitha, G., Raviranjan, K., & Naik, G. R. (2010). Applied Biochemistry and Biotechnology, 162, 2049–2057.

    Article  CAS  Google Scholar 

  29. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  30. Thiagarajan, S., Jeya, M., & Gunasekaran, P. (2006). World Journal of Microbiology and Biotechnology, 22, 487–492.

    Article  CAS  Google Scholar 

  31. Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiological Reviews, 52, 305–317.

    CAS  Google Scholar 

  32. Basaran, P., Basaran, N., & Hang, Y. D. (2000). World Journal of Microbiology and Biotechnology, 16, 545–550.

    Article  CAS  Google Scholar 

  33. Bataillon, M., Cardinali, A. P. N., Castillon, N., & Duchiron, F. (2000). Enzyme and Microbial Technology, 26, 187–192.

    Article  CAS  Google Scholar 

  34. Khasin, A., Alchnati, I., & Shoam, Y. (1993). Applied and Environmental Microbiology, 59, 1725–1730.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poosarla, V.G., Chandra, T.S. Purification and Characterization of Novel Halo-Acid-Alkali-Thermo-stable Xylanase from Gracilibacillus sp. TSCPVG. Appl Biochem Biotechnol 173, 1375–1390 (2014). https://doi.org/10.1007/s12010-014-0939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0939-6

Keywords

Navigation