Skip to main content
Log in

A Fungal Alpha-Galactosidase from Pseudobalsamia microspora Capable of Degrading Raffinose Family Oligosaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An alpha-galactosidase was purified from Pseudobalsamia microspora (PMG) to 1224.1-fold with a specific activity of 11,274.5 units/mg by ion-exchange chromatography and gel filtration. PMG is a monomeric protein with a molecular mass of 62 kDa as determined by SDS-PAGE and by gel filtration. Chemical modification using N-bromosuccinimide (NBS) resulted in a complete abrogation of the activity of PMG, suggesting that Trp is an amino acid essential to its activity. The activity was strongly inhibited by Hg2+, Cd2+, Cu2+, and Fe3+ ions. Three inner peptide sequences for PMG were obtained by liquid chromatography–tandem mass spectrometry (LC–MS–MS) analysis. When 4-nitrophenyl α-d-glucopyranoside (pNPGal) was used as substrate, the optimum pH and temperature of PMG were 5.0 and 55 °C, respectively. The Michaelis constant (K m) value of the alpha-galactosidase on pNPGal was 0.29 mM, and the maximal velocity (V max) was 0.97 μmol ml−1 min−1. Investigation by thin-layer chromatography (TLC) demonstrated its ability to hydrolyze raffinose and stachyose. Hence, it can be exploited in degradation of non-digestible oligosaccharides from food and feed industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Glasscock, H. H., & Ware, W. M. (1941). Investigations on the invasion of mushroom beds by Pseudobalsamia microspora. Annals of Applied Biology, 28, 85–90.

    Article  Google Scholar 

  2. Sampietro, D., Quiroga, E., Sgariglia, M., Soberon, J., & Vattuone, M. A. (2012). A thermostable alpha-galactosidase from Lenzites elegans (Spreng.) ex Pat. MB445947: purification and properties. Antonie Van Leeuwenhoek, 102, 257–267.

    Article  CAS  Google Scholar 

  3. Liu, C. Q., & He, G. Q. (2012). Multiple alpha-galactosidases from Aspergillus foetidus ZU-G1: purification, characterization and application in soybean milk hydrolysis. European Food Research and Technology, 234, 743–751.

    Article  CAS  Google Scholar 

  4. Shen, W., Li, Y., Chen, H., Jin, Z., Xu, X., Zhao, J., & Xie, Z. (2009). Purification and application of alpha-galactosidase from germinating coffee beans (Coffea arabica). European Food Research and Technology, 228, 969–974.

    Article  CAS  Google Scholar 

  5. Cox, T. M. (1996). The metabolic and molecular bases of inherited disease: Vols I, II and III (7th edn). Trends in Genetics, 12, 78–79.

    Article  CAS  Google Scholar 

  6. Liu, Q. P., Sulzenbacher, G., Yuan, H., Bennett, E. P., Pietz, G., Saunders, K., Spence, J., Nudelman, E., Levery, S. B., White, T., Neveu, J. M., Lane, W. S., Bourne, Y., Olsson, M. L., Henrissat, B., & Clausen, H. (2007). Bacterial glycosidases for the production of universal red blood cells. Nature Biotechnology, 25, 454–464.

    Article  CAS  Google Scholar 

  7. Singh, N., & Kayastha, A. M. (2013). A novel application of Cicer alpha-galactosidase in reduction of raffinose family oligosaccharides in soybean flour. Journal of Plant Biochemistry and Biotechnology, 22, 353–356.

    Article  CAS  Google Scholar 

  8. Brown, R. E., Jarvis, K. L., & Hyland, K. J. (1989). Protein measurement using bicinchoninic acid—elimination of interfering substances. Analytical Biochemistry, 180, 136–139.

    Article  CAS  Google Scholar 

  9. Laemmli, U. K., & Favre, M. (1973). Maturation of head of bacteriophage-T4. 1. DNA packaging events. Journal of Molecular Biology, 80, 575–599.

    Article  CAS  Google Scholar 

  10. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  11. Dwevedi, A., & Kayastha, A. M. (2009). Stabilization of beta-galactosidase (from peas) by immobilization onto amberlite MB-150 beads and its application in lactose hydrolysis. Journal of Agricultural and Food Chemistry, 57, 682–688.

    Article  CAS  Google Scholar 

  12. Katrolia, P., Jia, H., Yan, Q., Song, S., Jiang, Z., & Xu, H. (2012). Characterization of a protease-resistant alpha-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides. Bioresource Technology, 110, 578–586.

    Article  CAS  Google Scholar 

  13. Shibuya, H., Kobayashi, H., Sato, T., Kim, W. S., Yoshida, S., Kaneko, S., Kasamo, K., & Kusakabe, I. (1997). Purification, characterization, and cDNA cloning of a novel alpha-galactosidase from Mortierella vinacea. Bioscience Biotechnology and Biochemistry, 61, 592–598.

    Article  CAS  Google Scholar 

  14. Du, F., Liu, Q., Wang, H., & Ng, T. (2014). Purification an alpha-galactosidase from Coriolus versicolor with acid-resistant and good degradation ability on raffinose family oligosaccharides. World Journal of Microbiology and Biotechnology, 30, 1261–1267.

    Article  CAS  Google Scholar 

  15. Wang, H., Shi, P., Luo, H., Huang, H., Yang, P., & Yao, B. (2014). A thermophilic alpha-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk. Bioresource Technology, 153, 361–364.

    Article  CAS  Google Scholar 

  16. Ramalingam, Saraswathy, N., Sadasivam, S., Subha, K., & Poorani, N. (2007). Purification and properties of alpha-galactosidase from white-rot fungus Pleurotus florida. Indian Journal of Biochemistry & Biophysics, 44, 76–81.

    CAS  Google Scholar 

  17. Wang, H., Luo, H., Li, J., Bai, Y., Huang, H., Shi, P., Fan, Y., & Yao, B. (2010). An alpha-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with beta-mannanase. Bioresource Technology, 101, 8376–8382.

    Article  CAS  Google Scholar 

  18. Mi, S., Meng, K., Wang, Y., Bai, Y., Yuan, T., Luo, H., & Yao, B. (2007). Molecular cloning and characterization of a novel alpha-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme and Microbial Technology, 40, 1373–1380.

    Article  CAS  Google Scholar 

  19. Shankar, S. K., Dhananjay, S. K., & Mulimani, V. H. (2009). Purification and characterization of thermostable alpha-galactosidase from Aspergillus terreus GR. Applied Biochemistry and Biotechnology, 152, 275–285.

    Article  CAS  Google Scholar 

  20. Shibuya, H., Nagasaki, H., Kaneko, S., Yoshida, S., Park, G. G., Kusakabe, I., & Kobayashi, H. (1998). Cloning and high-level expression of alpha-galactosidase cDNA from Penicillium purpurogenum. Applied and Environmental Microbiology, 64, 4489–4494.

    CAS  Google Scholar 

  21. Garro, M. S., DeValdez, G. F., Oliver, G., & DeGiori, G. S. (1996). Purification of alpha-galactosidase from Lactobacillus fermentum. Journal of Biotechnology, 45, 103–109.

    Article  CAS  Google Scholar 

  22. Falkoski, D. L., Guimaraes, V. M., Callegari, C. M., Reis, A. P., de Barros, E. G., & de Rezende, S. T. (2006). Processing of soybean products by semipurified plant and microbial alpha-galactosidases. Journal of Agricultural and Food Chemistry, 54, 10184–10190.

    Article  CAS  Google Scholar 

  23. Zhou, J., Pan, L., Li, J., Tang, X., & Huang, Z. (2012). A novel alpha-galactosidase from Arthrobacter sp. GN14 isolated from Grus nigricollis feces: gene cloning, heterologous expression and characterization. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica, 52, 611–619.

    CAS  Google Scholar 

  24. Gote, M. M., Khan, M. I., & Khire, J. M. (2007). Active site directed chemical modification of α-galactosidase from Bacillus stearothermophilus (NCIM 5146): involvement of lysine, tryptophan and carboxylate residues in catalytic site. Enzyme and Microbial Technology, 40, 1312–1320.

    Article  CAS  Google Scholar 

  25. Ferreira, J. G., Reis, A. P., Guimaraes, V. M., Falkoski, D. L., Fialho, L. D. S., & de Rezende, S. T. (2011). Purification and characterization of Aspergillus terreus alpha-galactosidases and their use for hydrolysis of soymilk oligosaccharides. Applied Biochemistry and Biotechnology, 164, 1111–1125.

    Article  CAS  Google Scholar 

  26. Singh, N., & Kayastha, A. M. (2012). Purification and characterization of alpha-galactosidase from white chickpea (Cicer arietinum). Journal of Agricultural and Food Chemistry, 60, 3253–3259.

    Article  CAS  Google Scholar 

  27. Xu, H., Qin, Y., Huang, Z., & Liu, Z. (2014). Characterization and site-directed mutagenesis of an alpha-galactosidase from the deep-sea bacterium Bacillus megaterium. Enzyme and Microbial Technology, 56, 46–52.

    Article  CAS  Google Scholar 

  28. Du, F., Zhu, M., Wang, H., & Ng, T. (2013). Purification and characterization of an alpha-galactosidase from Phaseolus coccineus seeds showing degrading capability on raffinose family oligosaccharides. Plant Physiology and Biochemistry, 69, 49–53.

    Article  CAS  Google Scholar 

  29. Goundar, R., & Mulimani, V. H. (2004). Purification and characterization of guar galactomannan degrading alpha-galactosidase from Aspergillus oryzae DR-5. Journal of Microbiology and Biotechnology, 14, 863–867.

    CAS  Google Scholar 

  30. Mulimani, V. H., & Ramalingam (1995). Enzymic hydrolysis of raffinose and stachyose in soymilk by alpha-galactosidase from Gibberella fujikuroi. Biochemistry and Molecular Biology International, 36, 897–905.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Grants of China (Biomass dissociation and low-molecular fragment green monomerization and transformation, 2010CB732202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hexiang Wang or Tzi Bun Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Tian, G., Du, F. et al. A Fungal Alpha-Galactosidase from Pseudobalsamia microspora Capable of Degrading Raffinose Family Oligosaccharides. Appl Biochem Biotechnol 176, 2157–2169 (2015). https://doi.org/10.1007/s12010-015-1705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1705-0

Keywords

Navigation