Skip to main content
Log in

Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this review, bile salt, bile salt–surfactant, and bile salt–drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hofmann, A. F., & Mekhjian, H. S. (1971). In P. P. Nair & D. Kritchevsky (Eds.), The bile acids, chemistry, physiology and metabolism (Vol. 2). New York: Plenum Press.

    Google Scholar 

  2. Chu, B. S., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J., & Wilde, P. J. (2009). Modulating pancreatic lipase activity with galactolipids: effects of emulsion interfacial composition. Langmuir, 25, 9352–9360.

    Article  CAS  Google Scholar 

  3. Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., & Mackie, A. (2011). The role of bile salts in digestion. Advances in Colloid and Interface Science, 165, 36–46.

    Article  CAS  Google Scholar 

  4. Holm, R., Mullertz, A., & Mu, H. (2013). Bile salts and their importance for drug absorption. International Journal of Pharmaceutics, 453, 44–55.

    Article  CAS  Google Scholar 

  5. Madenci, D., & Egelhaaf, S. U. (2010). Self-assembly in aqueous bile salt solutions. Current Opinion in Colloid & Interface Science, 15, 109–115.

    Article  CAS  Google Scholar 

  6. Small, D. M., Penkett, S., & Chapman, D. (1969). Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochimica et Biophysica Acta, 21, 178–89.

    Article  Google Scholar 

  7. Small, D. M. (1968). A classification of biologic lipids based upon their interaction in aqeous systems. Journal of American Oil Chemical Society, 45, 108–119.

    Article  CAS  Google Scholar 

  8. Carey, M. C., Small, D. M., & Bliss, C. M. (1983). Lipid digestion and absorption. Annual Review Physiology, 45, 651–677.

    Article  CAS  Google Scholar 

  9. Coreta-Gomes, F. M. I., Vaz, W. L., Wasielewski, E., Geraldes, C. F., & Moreno, M. J. (2012). Quantification of cholesterol solubilized in bile salt micellar aqueous solutions using (13)C nuclear magnetic resonance. Analytical Biochemistry, 427, 41–8.

    Article  CAS  Google Scholar 

  10. Enhsen, A., Kramer, W., & Wess, G. (1998). Bile acids in drug discovery. Drug Discovery Today, 3, 409–418.

    Article  CAS  Google Scholar 

  11. Davis, A. P. (2007). Bile acid scaffolds in supramolecular chemistry: the interplay of design and synthesis. Molecules, 12, 2106–2122.

    Article  CAS  Google Scholar 

  12. Milhaj, P., Popovic, K., Cirin, D., & Farkas, Z. (2015). Binary mixed micelles of polysorbates (Tween 20 and Tween 60) and bile salts (Na-hyodeoxycholate and Na-cholate): regular solution theory and change of pKa values of micellar bile acid – a novel approach to estimate of the stability of the mixed micelles. Fluid Phase Equilibria, 396, 1–8.

    Article  CAS  Google Scholar 

  13. Barry, B. W., & Gray, G. M. T. (1975). Mixed micelle formation in aqueous solutions of alkyltrimethylammonium cholates. Journal of Colloid Interface Science., 52, 314–325.

    Article  CAS  Google Scholar 

  14. Barry, B. W., & Gray, G. M. T. (1975). Micelle formation and coacervation in mixtures of alkyltrimethylammonium bromides with di and trihydroxy bile salts. Journal of Colloid Interface Science, 52, 327–339.

    Article  CAS  Google Scholar 

  15. George, A., Vora, S., Desai, H., & Bahadur, P. (1998). Mixed micelles of cationic surfactants and bile acid salts in aqueous media. Journal of Surfactants and Detergents, 1, 507–514.

    Article  CAS  Google Scholar 

  16. Vethamuthu, M. S., Almgren, M., Brown, W., & Mukhtar, E. (1995). Aggregate structure, gelling, and coacervation within the L1 phase of the quasi-ternary system alkyltrimethylammonium bromide-sodium desoxycholate-water. Journal of Colloid Interface Science, 174, 461–479.

    Article  CAS  Google Scholar 

  17. Small, D. M. (1971). In P. P. Nair & D. Kritchevsky (Eds.), bile acids. New York: Plenum Press.

    Google Scholar 

  18. Vethamuthu, M. S., Almgren, M., Karlsson, G., & Bahadur, P. (1996). Effect of sodium chloride and varied alkyl chain length on aqueous cationic surfactant−bile salt systems. cryo-TEM and fluorescence quenching studies. Langmuir, 12, 2173–2185.

    Article  Google Scholar 

  19. Small, D. M., & Bourges, M. (1966). Lyotropic paracrystalline phases obtained with ternary and quaternary systems of amphiphilic substances in water: studies on aqueous systems of lecithin, bile salt, and cholesterol. Molecular Crystals, 1, 541–561.

    Article  CAS  Google Scholar 

  20. Fontell, K. (1965). The micellar structure of bile salt solutions. In P. Ekwall, K. Groth, & V. Runnstro¨m-Reio (Eds.), surface chemistry (pp. 252–267). Copenhagen: Munksgaard.

    Chapter  Google Scholar 

  21. Malik, N. A., & Anwar, A. (2016). Krafft temperature and thermodynamic study of interaction of glycine, diglycine, and triglycine with hexadecylpyridinium chloride and hexadecylpyridinium bromide: a conductometric approach. Journal of Molecular Liquids, 213, 213–220.

    Article  CAS  Google Scholar 

  22. Reis, S., Moutinho, C. G., Matosa, C., de Castroc, B., Paula Gameiroc, P., & Lima, J. L. F. C. (2004). Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Analytical Biochemistry, 334, 117–126.

    Article  CAS  Google Scholar 

  23. Sridevi, N., & Prabhune, A. A. (2009). Brevibacillus sp: a novel thermophilic source for the production of bile salt hydrolase. Applied Biochemistry and Biotechnology, 157, 257–262.

    Article  CAS  Google Scholar 

  24. Li, G., & McGown, L. B. (1994). Model for bile salt micellization and solubilization from studies of a “polydisperse” array of fluorescent probes and molecular modeling. Journal of Physical Chemistry, 98, 13711–13719.

    Article  CAS  Google Scholar 

  25. Pavlovic, N., Stankov, K., & Mikov, M. (2012). Probiotics-interactions with bile acids and impact on cholesterol metabolism. Applied Biochemistry and Biotechnology, 168, 1880–1895.

    Article  CAS  Google Scholar 

  26. Zana, R. (1978). The role of hydrogen bonding in the formation of bile salt micelles. Comments. Journal of Physical Chemistry, 82, 2440–2443.

    Article  CAS  Google Scholar 

  27. Oakenfull, D. G., & Fisher, L. R. (1978). The role of hydrogen bonding in the formation of bile salt micelles. Reply to comments. Journal of Physical Chemistry, 82, 2443–2445.

    Article  CAS  Google Scholar 

  28. Fisher, L. R., & Oakenfull, D. G. (1980). The role of hydrogen bonding in the formation of bile salt micelles. 2. A demonstration of geometric effects on the stabilizing role of hydrogen bonding. Journal of Physical Chemistry, 84, 936–937.

    Article  CAS  Google Scholar 

  29. Ventaketusan, P., Cheng, Y., & Kahne, D. (1994). Hydrogen Bonding in Micelle Formation. Journal of American Chemical Society, 116, 6955–6956.

    Article  Google Scholar 

  30. Carey, M. C., & Small, D. M. (1969). Micellar properties of dihydroxy and trihydroxy bile salts: effects of counterion and temperature. Journal of Colloid and Interface Science, 31, 382–396.

    Article  CAS  Google Scholar 

  31. Seret, A., & Bahri, A. (2009). The CMC-like behaviour of bile salts as probed by photoexcited Rose Bengal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339, 153–158.

    Article  CAS  Google Scholar 

  32. Hinze, W. L., Hu, W., Quina, F. H., & Mohammadzai, I. U. (2000). Bile acid/salt surfactant systems: general properties and survey of analytical applications. In W. L. Hinze (Ed.), Organized Assemblies in Chemical Analysis (pp. 1–70). Stamford, CT: JAI Press.

    Google Scholar 

  33. Matsuoka, K., Maeda, M., & Moroi, Y. (2003). Micelle formation of sodium glyco- and taurocholates and sodium glyco- and taurodeoxycholates and solubilization of cholesterol into their micelles. Colloids and Surfaces B: Biointerfaces, 32, 87–95.

    Article  CAS  Google Scholar 

  34. Sugioka, H., & Moroi, Y. (1998). Micelle formation of sodium cholate and solubilization into the micelle. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1394, 99–110.

    Article  CAS  Google Scholar 

  35. Megyesi, M., & Biczók, L. (2007). Berberine alkaloid as a sensitive fluorescent probe for bile salt aggregates. Journal of Physical Chemistry B, 111, 5635–5639.

    Article  CAS  Google Scholar 

  36. Philp, D., & Stoddart, J. F. (1996). Self-assembly in natural and unnatural systems. Angewandte Chemie International Edition, 35, 1154–1196.

    Article  Google Scholar 

  37. Paul, S., & Patey, G. N. (2007). The influence of urea and trimethylamine-N-oxide on hydrophobic interactions. Journal of Physical Chemistry B, 111, 7932–7933.

    Article  CAS  Google Scholar 

  38. Tanford, C. (1980). The hydrophobic effect. New York: Wiley.

    Google Scholar 

  39. Israelachvili, J. N. (1992). Intermolecular and surface forces. London: Academic.

    Google Scholar 

  40. Hofmann, A. F., & Small, D. M. (1967). Detergent properties of bile salts: correlation with physiological function. Annual Review of Medicine, 18, 333–376.

    Article  CAS  Google Scholar 

  41. Carey, M. C., & Small, D. M. (1970). The characteristics of mixed micellar solutions with particular reference to bile. The American Journal of Medicine, 49, 590–608.

    Article  CAS  Google Scholar 

  42. Carey, M. C., & Small, D. M. (1972). Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Archives of Internal Medicine, 130, 506–527.

    Article  CAS  Google Scholar 

  43. Oakenfull, D. G., & Fisher, L. R. (1977). The role of hydrogen bonding in the formation of bilesalt. Journal of Physical Chemistry, 81, 1838–1841.

    Article  CAS  Google Scholar 

  44. Kawamura, H., Murata, Y., Yamaguchi, T., Igimi, H., Tanaka, M., Sugihara, G., & Kratovihil, J. P. (1989). Spin label studies of bile salt micelles. Journal of Physical Chemistry, 93, 3321–3326.

    Article  CAS  Google Scholar 

  45. Warren, D. B., Chalmers, D. K., Hutchinson, K., Dang, W., & Poton, C. W. (2006). Molecular dynamics simulation of spontaneous bile salt aggregation. Colloids and Surfaces A, 280, 182–93.

    Article  CAS  Google Scholar 

  46. Hofmann, A. F. (1999). Bile acids: the good, the bad, and the ugly. Physiology, 14, 24–29.

    CAS  Google Scholar 

  47. Ulmius, J., Lindblom, G., Wennerstrom, H., Johansson, L. B., Fontell, K., Soderman, O., & Arvidson, G. (1982). Molecular organization in the liquid-crystalline phases of lecithin--sodium cholate-water systems studied by nuclear magnetic resonance. Biochemistry, 21, 1553–1560.

    Article  CAS  Google Scholar 

  48. Hjelm, R. P., Jr., Thiyagarajan, P., & Alkan-Onyuksel, H. (1992). Organization of phosphatidylcholine and bile salt in rodlike mixed micelles. Journal of Physical Chemistry, 96, 8653–8661.

    Article  CAS  Google Scholar 

  49. Long, A. M., Kaler, E. W., Lee, S. P., & Wignall, G. D. (1994). Characterization of lecithin-taurodeoxycholate mixed micelles using small-angle neutron scattering and static and dynamic light scattering. Journal of Physical Chemistry, 98, 4402–4410.

    Article  CAS  Google Scholar 

  50. Schubert, R., Beyer, K., Wolburg, H., & Schmidt, K. H. (1986). Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate. Biochemistry, 25, 5263–5269.

    Article  CAS  Google Scholar 

  51. Lichtenberg, D., Zilberman, Y., Greenzaid, P., & Zamir, S. (1979). Structural and kinetic studies on the solubilization of lecithin by sodium deoxycholate. Biochemistry, 18, 3517–3525.

    Article  CAS  Google Scholar 

  52. Almog, S., Kushnir, T., Nir, S., & Lichtenberg, D. (1986). Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles. Biochemistry, 25, 2597–2605.

    Article  CAS  Google Scholar 

  53. Small, D. M. (1971). In P. P. Nair & D. Kritchevsky (Eds.), The bile acids: chemistry, physiology and metabolism (Vol. 1). New York: Plenum.

    Google Scholar 

  54. Ju, C., & Bohn, C. (1996). Dynamics of probe complexation to bile salt aggregates. Journal of Physical Chemistry, 100, 3847–3854.

    Article  CAS  Google Scholar 

  55. Mukherjee, B., Dar, A. A., Bhat, P. A., Moulik, S. P., & Das, A. R. (2015). Micellization and adsorption behavior of bile salt systems. RSC Advances. doi:10.1039/c5ra20909a.

    Google Scholar 

  56. Fontell, K. (1971). Micellar behaviour in solutions of bile-acid salts. Kolloid-Zeitschrift und Zeitschrift für Polymere, 246, 710–718.

    Article  CAS  Google Scholar 

  57. Camile, W. (2003). The practice of medicinal chemistry. Oxford: Academic.

    Google Scholar 

  58. De Castro, B., Gameiro, P., Guimaraes, C., Lima, J. L. F. C., & Reis, S. (2001). Study of partition of nitrazepam in bile salt micelles and the role of lecithin. Journal of Pharmaceutical and Biomedical Analysis, 24, 595–602.

    Article  Google Scholar 

  59. Bowe, C., Mokhtarzadeh, L., Venkatesen, P., Babu, S., Axelrod, H., Sofia, M. J., Kakarla, R., Chan, T. Y., Kim, J. S., Lee, H. J., Amidon, G. L., Choe, S. Y., Walker, S., & Kahne, D. (1997). Design of compounds that increase the absorption of polar molecules. In Proceedings of the National Academy of Sciences of the United States of America, 94 (pp. 12218–12223).

    Google Scholar 

  60. Gordon, G. S., Moses, A. C., Silver, R. D., Flier, J. R., & Carey, M. C. (1985). Nasal absorption of insulin: enhancement by hydrophobic bile salts. In Proceedings of the National Academy of Sciences of the United States of America, 82 (pp. 7419–7423).

    Google Scholar 

  61. Roda, A., Hofmann, A. F., & Mysels, K. J. (1983). The influence of bile salt structure on self-association in aqueous solutions. The Journal of Biological Chemistry, 258, 6362–6370.

    CAS  Google Scholar 

  62. Zana, R., & Guveli, D. (1985). Fluorescence probing study of the association of bile salts in aqueous solutions. Journal of Physical Chemistry, 89, 1687–1690.

    Article  CAS  Google Scholar 

  63. Small, D. M. (1968). Size and structure of bile salt micelles influence of structure, concentration, counterion concentration, pH, and temperature. Advances in Chemistry, 84, 31–52.

    Article  Google Scholar 

  64. Small, D. M. (1971). In P. P. Nair & D. KritMukuchevsky (Eds.), The bile acids (Vol. 1, p. 249). New York: Plenum Press.

    Google Scholar 

  65. Kratohvil, J. (1984). Size of bile salt micelles: techniques, problems and results. Hepatology, 4, 85S–95S.

    Article  CAS  Google Scholar 

  66. Roy, A., Kundu, N., Banik, D., Kuchlyan, J., & Sarkar, N. (2015). How does bile salt penetration affect the self-assembled architecture of pluronic P123 micelles? – light scattering and spectroscopic investigations. Physical Chemistry Chemical Physics, 17, 19977–19990.

    Article  CAS  Google Scholar 

  67. Malik, N. A. (2015). Surfactant–amino acid and surfactant–surfactant interactions in aqueous medium: a review. Applied Biochemistry and Biotechnology, 176, 2077–2106.

    Article  CAS  Google Scholar 

  68. Pártay, L. B., & Jedlovszky, P. (2007). Molecular Aggregates in Aqueous Solutions of Bile Acid Salts. Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 111, 9886–9896.

    Article  CAS  Google Scholar 

  69. Matsuoka, K., & Moroi, Y. (2002). Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1). Biochimica et Biophysica Acta, 1580, 189–199.

    Article  CAS  Google Scholar 

  70. Heinze, W. L. (1996). Organized assemblies in chemical analysis (Vol. 2). JAI: Press.

    Google Scholar 

  71. Furusawa, T., & Matuura, R. (1967). Surface chemistry of gallstone formation. Hyomen (Surface), 5, 749–764.

    Google Scholar 

  72. Cabral, D. J., & Small, D. M. (1989). In S. G. Schultz, J. G. Forte, & B. B. Rauner (Eds.), Handbook of physiology (Vol. 3, pp. 621–662). New York: Waverly Press.

    Google Scholar 

  73. Erlinger, S. (1987). Physiology of bile secretion and enterohepatic circulation in physiology of the gastrointestinal tract. New York: Raven.

    Google Scholar 

  74. Coello, A., Meijide, F., Nunez, E. R., & Tato, J. V. (1993). Aggregation behavior of sodium cholate in aqueous solution. Journal of Physical Chemistry, 97, 10186–10191.

    Article  CAS  Google Scholar 

  75. Coello, A., Meijide, F., Nunez, E. R., & Tato, J. V. (1996). Aggregation behavior of bile salts in aqueous solution. Journal of Pharmaceutical Sciences, 85, 9–15.

    Article  CAS  Google Scholar 

  76. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews, 89, 147–191.

    Article  CAS  Google Scholar 

  77. Funasaki, N., Fukuba, T., Kitagawa, M., Nomura, M., Ishikawa, S., Hirota, S., & Neya, S. (2004). Two-dimensional NMR study on the structures of micelles of sodium taurocholate. Journal of Physical Chemistry B, 108, 438–443.

    Article  CAS  Google Scholar 

  78. Pártay, L. B., Sega, M., & Jedlovszky, P. (2007). Morphology of bile salt micelles as studied by computer simulation methods. Langmuir, 23, 12322–12328.

    Article  CAS  Google Scholar 

  79. Small, D. M., Penkett, S. A., & Chapman, D. (1969). Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 176, 178–189.

    Article  CAS  Google Scholar 

  80. Esposito, G., Giglio, E., Pavel, N. V., & Zanobi, A. (1987). Size and shape of sodium deoxycholate micellar aggregates. Journal of Physical Chemistry, 91, 356–362.

    Article  CAS  Google Scholar 

  81. Lopez, F., Samseth, J., Mortensen, K., Rosenqvist, E., & Rouch, J. (1996). Micro- and macrostructural studies of sodium deoxycholate micellar complexes in aqueous solutions. Langmuir, 12, 6188–6196.

    Article  CAS  Google Scholar 

  82. Mysels, K. J. (1984). Surface tension studies of bile salt association. Hepatology, 4, 80S–84S.

    Article  CAS  Google Scholar 

  83. Spivak, W., Morrison, C., Devinuto, D., & Yuey, W. (1988). Spectrophotometric determination of the critical micellar concentration of bile salts using bilirubin monoglucuronide as a micellar probe. Utility of derivative spectroscopy. Biochemical Journal, 252, 275–281.

    Article  CAS  Google Scholar 

  84. Hofmann, A. F., & Rods, A. (1984). Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. Journal of Lipid Research, 25, 1477–1489.

    CAS  Google Scholar 

  85. Schurtenberger, P., Mazer, N., & Kaenzig, W. (1985). Micelle to vesicle transition in aqueous solutions of bile salt and lecithin. Journal of Physical Chemistry, 89, 1042–1049.

    Article  CAS  Google Scholar 

  86. Simonovi, B. R., & Momirovi, M. (1997). Determination of critical micelle concentration of bile acid salts by micro-calorimetric titration. Mikrochimica Acta, 127, 101–104.

    Article  Google Scholar 

  87. Subuddhi, U., & Mishra, A. K. (2007). Micellization of bile salts in aqueous medium: a fluorescence study. Colloids and Surfaces B: Biointerfaces, 57, 102–107.

    Article  CAS  Google Scholar 

  88. Wu, N., Barker, G. E., & Huie, C. W. (1994). Separation of porphyrins and porphyrin isomers in capillary electrophoresis using mixed ionic surfactant-bovine serum albumin buffer systems. Journal of Chromatography A, 659, 435–442.

    Article  CAS  Google Scholar 

  89. Kratohvil, J. P. (1986). Size of bile salt micelles: techniques, problems and results. Advanced Colloid and Interface Science, 26, 131–154.

    Article  CAS  Google Scholar 

  90. Schurtenberger, P., Mazer, N., & Kaenzig, W. (1983). Static and dynamic light scattering studies of micellar growth and interactions in bile salt solutions. Journal of Physical Chemistry, 87, 308–315.

    Article  CAS  Google Scholar 

  91. Warren, D. B., Chalmers, D. K., Hutchison, K., Dang, W., & Pouton, C. W. (2006). Molecular dynamics simulations of spontaneous bile salt aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280, 182–193.

    Article  CAS  Google Scholar 

  92. Mohapatra, M., & Mishra, A. K. (2010). 1-Naphthol as a sensitive fluorescent molecular probe for monitoring the interaction of submicellar concentration of bile salt with a bilayer membrane of DPPC, a lung surfactant. Journal of Physical Chemistry B, 114, 14934–14940.

    Article  CAS  Google Scholar 

  93. Maestre, A., Guardado, P., & Moyá, M. L. (2014). Thermodynamic study of bile salts micellization. Journal of Chemical Engineering Data, 59, 433–438.

    Article  CAS  Google Scholar 

  94. Danielson, H. (1999). In P. P. Nair & D. Kritchvsky (Eds.), The bile acids: chemistry, physiology and metabolism (Vol. 1–3, p. 73). New York: Plenum.

    Google Scholar 

  95. Hofmann, A. F. (1999). In T. Northfield, P. L. Zentler-Munro, & R. P. Jazrawi (Eds.), Bile acids and hepatobiliary diseases (pp. 303–332). Boston: Kluwer.

    Google Scholar 

  96. Carey, M. C. (1983). In P. Avogadro (Ed.), Phospholipids and atherosclerosis (pp. 33–63). New York: Raven.

    Google Scholar 

  97. Hofmann, A. F. (1994). In I. M. Arias et al. (Eds.), The liver: biology and pathology (Thirdth ed., p. 667). New York: Raven.

    Google Scholar 

  98. Nair, P. P., & Kritchevsky, D. (1971). In P. P. Nair & D. Kritchvsky (Eds.), The bile acids: chemistry, physiology and metabolism (Vol. 1, pp. 1–9). New York: Plenum.

    Google Scholar 

  99. Borne, J., Nylander, T., & Khan, A. (2003). Vesicle formation and other structures in aqueous dispersions of monoolein and sodium oleate. Journal of Colloid and Interface Science, 257, 310–320.

    Article  CAS  Google Scholar 

  100. Hammad, M. A., & Muller, B. W. (1998). Solubility and stability of tetrazepam in mixed micelles. European Journal of Pharmaceutical Sciences, 7, 49–55.

    Article  CAS  Google Scholar 

  101. Lee, S. S., Kiserow, D. J., & McGown, L. B. (1997). Enzyme solubilization in a reversed micellar microreactor with a bile salt cosurfactant. Journal of Colloid and Interface Science, 193, 32–40.

    Article  CAS  Google Scholar 

  102. Keno, M., Kimoto, Y., Ikeda, Y., Momose, H., & Zana, R. (1987). Study on the aggregation number of mixed micelles in aqueous binary mixtures of the bile salts and nonionic surfactant. Journal of Colloid and Interface Science, 117, 179–186.

    Article  Google Scholar 

  103. Jana, P. K., & Moulik, S. P. (1991). Interaction of bile salts with hexadecyltrimethylammonium bromide and sodium dodecyl sulfate. Journal of Physical Chemistry, 95, 9525–9532.

    Article  CAS  Google Scholar 

  104. Fernández-Leyes, M. D., Messina, P. V., & Schulz, P. C. (2007). Aqueous sodium dehydrocholate-sodium deoxycholate mixtures at low concentration. Journal of Colloid and Interface Science, 314, 659–664.

    Article  CAS  Google Scholar 

  105. Clint, J. H. (1975). Micellization of mixed nonionic surface active agents. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 71, 1327–1334.

    Article  CAS  Google Scholar 

  106. Rubingh, D. N. (1979). In K. L. Mittal (Ed.), Solution Chemistry of Surfactants (pp. 337–354). New York: Plenum Press.

    Chapter  Google Scholar 

  107. Holland, P. M., & Rubingh, D. N. (1983). Nonideal multicomponent mixed micelle model. Journal of Physical Chemistry, 87, 1984–1990.

    Article  CAS  Google Scholar 

  108. Hidalgo-Rodríguez, M., Fuguet, E., Ràfols, C., & Rosés, M. (2010). Solute–solvent interactions in micellar electrokinetic chromatography: VII. Characterization of sodium cholate–sodium deoxycholate mixed-micellar systems. Journal of Chromatography A, 1217, 1701–1708.

    Article  CAS  Google Scholar 

  109. Santhanalakshmi, J., Lakashmi, G. S., Aswal, V. K., & Goyal, P. S. (2001). Small-angle neutron scattering study of sodium cholate and sodium deoxycholate interacting micelles in aqueous medium. In Proceedings of the National Academy of Sciences, India Section A: Chemical Sciences (Vol. 113, pp. 55–62).

    Google Scholar 

  110. Wu, Q., Cheng, Y., Hu, J., Zhao, L., & Xu, T. (2009). Insights into the interactions between dendrimers and bioactive surfactants: 3. size-dependent and hydrophobic property-dependent encapsulation of bile salts. Journal of Physical Chemistry B, 113, 12934–12943.

    Article  CAS  Google Scholar 

  111. Lee, Y. K., Nam, J. H., Shin, H. C., & Byun, Y. (2001). Conjugation of low-molecular-weight heparin and deoxycholic acid for the development of a new oral anticoagulant agent. Circulation, 104, 3116–3120.

    Article  CAS  Google Scholar 

  112. Poša, M., & Farkaš, Z. (2010). Cholesterol solubilization by oxo derivatives of selected bile acids and their membranotoxicity. Collection of Czechoslovak Chemical Communications, 75, 767–787.

    Article  CAS  Google Scholar 

  113. Mikov, M., & Fawcett, J. P. (2007). Bile acids. Geneva: Medishet Publisher.

    Google Scholar 

  114. Posa, M., & Ćirin, D. (2012). Mixed micelles of sodium salts of bile acids and tween 40: effect of the steroid skeleton on the coefficient of interaction in mixed micelles. Industrial and Engineering Chemistry Research, 51, 14722–14728.

    Article  CAS  Google Scholar 

  115. Hildebrand, A., Neubert, R., Garidel, P., & Blume, A. (2002). Bile salt induced solubilization of synthetic phosphatidylcholine vesicles studied by isothermal titration calorimetry. Langmuir, 18, 2836–2847.

    Article  CAS  Google Scholar 

  116. Hildebrand, A., Beyer, K., Neubert, R., Garidel, P., & Blume, A. (2003). Temperature dependence of the interaction of cholate and deoxycholate with fluid model membranes and their solubilization into mixed micelles. Colloids Surfaces B: Biointerfaces, 32, 335–351.

    Article  CAS  Google Scholar 

  117. Lichtenberg, D., Opatowski, E., & Kozlov, M. M. (2000). Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1508, 1–19.

    Article  CAS  Google Scholar 

  118. Mannaa, K., Changb, C. H., & Pandaa, A. K. (2012). A potentiometric titration study on the dissociation of bile acids related to the mode of interaction between different head groups of nonionic surfactants with free bile salts upon mixed micelle formation in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415, 10–21.

    Article  CAS  Google Scholar 

  119. Nydh, M., Sodeman, O., Wiedmer, S. K., & Riekkola, M. L. (2000). Mixed micelles of SDS and sodium cholate. A nuclear magnetic resonance diffusion and relaxation study. Journal of Dispersion Science and Technology, 21, 209–227.

    Article  Google Scholar 

  120. Tanaka, T., Nakashima, T., Lee, S., Nagadome, S., Sasaki, Y., Ueno, M., & Sugihara, G. (1995). A potentiometric titration study on the dissociation of bile acids related to the mode of interaction between different head groups of nonionic surfactants with free bile salts upon mixed micelle formation in water. Colloid and Polymer Science, 273, 392–398.

    Article  CAS  Google Scholar 

  121. Motomura, K., & Aratono, M. (1993). In K. Ogino & M. Abe (Eds.), Mixed Surfactant Systems (pp. 99–144). New York: Marcel Dekker.

    Google Scholar 

  122. Ćirin, D. M., Poša, M. M., & Krstonošić, V. S. (2012). Interactions between sodium cholate or sodium deoxycholate and nonionic surfactant (Tween 20 or Tween 60) in aqueous solution. Industrial and Engineering Chemistry Research, 51, 3670–3676.

    Article  CAS  Google Scholar 

  123. Cirin, D. M., Posa, M. M., & Krstonosic, V. S. (2011). Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate. Chemistry Central Journal, 5, 89–97.

    Article  CAS  Google Scholar 

  124. Haque, M. E., Das, A. R., & Moulik, S. P. (1995). Behaviors of sodium deoxycholate (NaDC) and polyoxyethylene tert-octylphenyl ether (Triton X-100) at the air/water interface and in the bulk. Journal of Physical Chemistry, 99, 14032–14038.

    Article  CAS  Google Scholar 

  125. Jendric, M., Filipović-Vincekovic, N., Vincekovic, M., Bujan, M., & Primožic, I. (2005). Phase behavior of bis(quaternary ammonium bromide)/sodium cholate/H2O system. Journal of Dispersion Science and Technology, 26, 39–51.

    Article  CAS  Google Scholar 

  126. Jiang, L., Wang, K., Deng, M., Wang, Y., & Huang, J. (2008). Bile salt-induced vesicle-to-micelle transition in catanionic surfactant systems: steric and electrostatic interactions. Langmuir, 2008(24), 4600–4606.

    Article  CAS  Google Scholar 

  127. Zimmerman, H. J. (1999). Drug-induced liver disease. In H. J. Zimmerman (Ed.), Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver (2nd ed., pp. 427–456). Philadelphia, PA: Lippincott Williams & Wilkins.

    Google Scholar 

  128. Bates, T. R., Gibaldi, M., & Kanig, J. L. (1966). Solubilizing properties of bile salt solutions II. Effect of inorganic electrolyte, lipids, and a mixed bile salt system on solubilization of glutethimide, griseofulvin, and hexestrol. Journal of Pharmaceutical Sciences, 55, 901–906.

    Article  CAS  Google Scholar 

  129. Amundson, L. L., Li, R., & Bohne, C. (2008). Effect of the guest size and shape on its binding dynamics with sodium cholate aggregates. Langmuir, 24, 8491–8500.

    Article  CAS  Google Scholar 

  130. Mandal, S., Ghosh, S., Banik, D., Banerjee, C., Kuchlyan, J., & Sarkar, N. (2013). An investigation into the effect of the structure of bile salt aggregates on the binding interactions and ESIHT dynamics of curcumin: a photophysical approach to probe bile salt aggregates as a potential drug carrier. Journal of Physical Chemistry B, 117, 13795–13807.

    Article  CAS  Google Scholar 

  131. Pedersen, J. M., Matsson, P., Bergström, C. A. S., Hoogstraate, J., Norén, A., LeCluyse, E. L., & Artursson, P. (2013). Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicological Sciences, 136, 328–343.

    Article  CAS  Google Scholar 

  132. Hermida, L. G., Sabes-Xamani, M., & Barnadas-Rodríguez, R. (2014). Characteristics and behaviour of liposomes when incubated with natural bile salt extract: implications for their use as oral drug delivery systems. Soft Matter, 10, 6677–6685.

    Article  CAS  Google Scholar 

  133. Rosoff, M., & Serajuddin, A. T. M. (1980). Solubilization of diazepam in bile salts and in sodium cholate-lecithin-water phases. International Journal of Pharmacy, 6, 137–146.

    Article  CAS  Google Scholar 

  134. Wiedmann, T. S., Liang, W., & Kamel, L. (2002). Solubilization of drugs by physiological mixtures of bile salts. Pharmaceutical Research, 19, 1203–1208.

    Article  CAS  Google Scholar 

  135. Gomez-Mendoza, M., Nuin, E., Andreu, I., Marin, M. L., & Miranda, M. A. (2012). Photophysical probes to assess the potential of cholic acid aggregates as drug carriers. Journal of Physical Chemistry B, 116, 10213–10218.

    Article  CAS  Google Scholar 

  136. Miyazaki, H., Inoue, S., Yamahira, T., & Nadai, T. (1979). Interaction of drugs with bile components. I. Effects of bile salts on the dissolution behavior of indomethacin and phenylbutazone. Chemical and Pharmaceutical Bulletin Tokyo, 27, 2468–2472.

    Article  CAS  Google Scholar 

  137. Miyazaki, S., Inoue, H., Yamahira, T., & Nadai, T. (1980). Interaction of drugs with bile components. II. Effect of bile on the absorption of indomethacin and phenylbutazone in rats. Chemical and Pharmaceutical Bulletin, 28, 323–326.

    Article  CAS  Google Scholar 

  138. Mahajan, S., & Mahajan, R. K. (2012). Interactions of phenothiazine drugs with bile salts: micellization and binding studies. Journal of Colloid and Interface Science, 387, 194–204.

    Article  CAS  Google Scholar 

  139. Laniado-Laborin, R., & Cabrales-Vargas, M. N. (2009). Amphotericin B: side effects and toxicity. Revista Iberoamericana de Micología, 26, 223–227.

    Article  Google Scholar 

  140. Chen, S. C., Playford, E. G., & Sorrell, T. C. (2010). Antifungal therapy in invasive fungal infections. Current Opinion in Pharmacology, 10, 522–530.

    Article  CAS  Google Scholar 

  141. Pagano, L., Caira, M., Valentini, C. G., Posteraro, B., & Fianchi, L. (2010). Antifungal therapy in invasive fungal infections. Blood Reviews, 24, 51–61.

    Article  CAS  Google Scholar 

  142. Klaassen, C. D., & Aleksunes, L. M. (2010). Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacological Reviews, 62, 1–96.

    Article  CAS  Google Scholar 

  143. Rub, M. A., Sheikh, M. S., Khan, F., Khan, S. B., & Asiri, A. M. (2014). Bile salts aggregation behavior at various temperatures under the influence of amphiphilic drug imipramine hydrochloride in aqueous medium. Zeitschrift für Physikalische Chemie, 228, 747–767.

    Article  CAS  Google Scholar 

  144. Rub, M. A., Sheikh, M. S., Asiri, A. M., Azum, N., Khan, A., Khan, A. A. P., Khan, S. B., & Kabir-ud-Din. (2013). Aggregation behaviour of amphiphilic drug and bile salt mixtures at different compositions and temperatures. Journal of Chemical Thermodynamics, 64, 28–39.

    Article  CAS  Google Scholar 

  145. Kumar, D., & Rub, M. A. (2015). Effect of sodium taurocholate on aggregation behavior of amphiphilic drug solution. Tenside, Surfactants, Detergents, 52, 464–472.

    Article  CAS  Google Scholar 

  146. Al-Muhanna, M. K., Rub, M. A., Azum, N., Khan, S. B., & Asiri, A. M. (2016). Self-aggregation phenomenon of promazine hydrochloride under the influence of sodium cholate/sodium deoxycholate in aqueous medium. Journal of Dispersion Science and Technology, 37, 450–463.

    Article  CAS  Google Scholar 

  147. Lipinski, C. (2002). Poor aqueous solubility – an industry wide problem in drug discovery. American Pharmaceutical Review, 5, 82–85.

    Google Scholar 

  148. Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M., & Leeson, P. D. (2003). A comparison of physiochemical property profiles of development and marketed oral drugs. Journal of Medicinal Chemistry, 46, 1250–1256.

    Article  CAS  Google Scholar 

  149. Vogtherr, M., Marx, A., Mieden, A. C., & Saal, C. (2015). Investigation of solubilising effects of bile salts on an active pharmaceutical ingredient with unusual pH dependent solubility by NMR spectroscopy. European Journal of Pharmaceutics and Biopharmaceutics, 92, 32–41.

    Article  CAS  Google Scholar 

  150. Mithani, S. D., Bakatselou, V., TenHoor, C. N., & Dressman, J. B. (1996). Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharmaceutical Research, 13, 163–167.

    Article  CAS  Google Scholar 

  151. Gil, H. N., & Lee, B. H. (2008). Study on the micellization of DPC/Brij 35 mixed surfactant systems by the conductivity method. Journal of Korean Chemical Society, 52, 461–467.

    Article  CAS  Google Scholar 

  152. Mukerjee, P. (1967). The nature of the association equilibria and hydrophobic bonding in aqueous solutions of association colloids. Advances in Colloid Interface Science, 1, 242–275.

    Article  Google Scholar 

  153. Zhou, Q., & Rosen, M. J. (2003). Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir, 19, 4555–4562.

    Article  CAS  Google Scholar 

  154. Rosen, M. J., & Hua, X. Y. J. (1982). Surface concentrations and molecular interactions in binary mixtures of surfactants. Journal of Colloid Interface Science, 86, 164–172.

    Article  CAS  Google Scholar 

  155. Haque, M. E., Das, A. R., & Moulik, S. P. (1999). Mixed micelles of sodium deoxycholate and polyoxyethylene sorbitan monooleate (Tween 80). Journal of Colloid and Interface Science, 217, 1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Nisar Ahmad Malik would like to thank Head Department of Chemistry, University of Kashmir for providing the necessary facilities and to Dr. Aijaz Ahmad Dar for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisar Ahmad Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, N.A. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review. Appl Biochem Biotechnol 179, 179–201 (2016). https://doi.org/10.1007/s12010-016-1987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-1987-x

Keywords

Navigation