Skip to main content
Log in

In Silico Template Selection of Short Antimicrobial Peptide Viscotoxin for Improving Its Antimicrobial Efficiency in Development of Potential Therapeutic Drugs

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rapid increase in antibiotic resistance has posed a worldwide threat, due to increased mortality, morbidity, and expenditure caused by antibiotic-resistant microbes. Recent development of the antimicrobial peptides like viscotoxin (Vt) has been successfully comprehended as a substitute for classical antibiotics. A structurally stable peptide, Vt can enhance antimicrobial property and can be used for various developmental purposes. Thus, structural stability among the antimicrobial peptides, Vt A1 (3C8P), A2 (1JMN), A3 (1ED0), B (1JMP), and C (1ORL) of Viscus album was computationally analyzed. In specific, the static confirmation of VtA3 showed high number of intramolecular interactions, along with an increase in hydrophobicity than others comparatively. Further, conformational sampling was used to analyze various geometrical parameters such as root mean square deviation, root mean square fluctuation, radius of gyration, and ovality which also revealed the structural stability of VtA3. Moreover, the statistically validated contours of surface area, lipophilicity, and distance constraints of disulfide bonds also supported the priority of VtA3 with respect to stability. Finally, the functional activity of peptides was accessed by computing their free energy of membrane association and membrane interactions, which defined VtA3 as functionally stable. Currently, peptide-based antibiotics and nanoparticles have attracted the pharmaceutical industries for their potential therapeutic applications. Thereby, it is proposed that viscotoxin A3 (1ED0) could be used as a preeminent template for scaffolding potentially efficient antimicrobial peptide-based drugs and nanomaterials in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han, Y., Zhang, B., Shen, Q., You, C., Yu, Y., Li, P., & Shang, Q. (2015). Purification and identification of two antifungal cyclic peptides produced by bacillus amyloliquefaciens L-H15. Applied Biochemistry and Biotechnology, 176(8), 2202–2212. doi:10.1007/s12010-015-1708-x.

    Article  CAS  Google Scholar 

  2. Giuliani, A., Pirri, G., & Nicoletto, S. (2007). Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sciences, 2(1), 1–33.

    Article  CAS  Google Scholar 

  3. Jenssen, H., Hamill, P., & Hancock, R. E. W. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19(3), 491–511. doi:10.1128/CMR.00056-05.

    Article  CAS  Google Scholar 

  4. Shiuan, D., Lin, H.-K., Chen, Y.-H., Chang, D.-K., Huang, K.-J., & Farh, L. (2015). Exploration of peptide inhibitors of human squalene synthase through molecular modeling and phage display technique. Applied Biochemistry and Biotechnology, 178(2), 312–323. doi:10.1007/s12010-015-1873-y.

    Article  Google Scholar 

  5. Uhlig, T., Kyprianou, T., Martinelli, F. G., Oppici, C. A., Heiligers, D., Hills, D., et al. (2014). The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteomics, 4, 58–69. doi:10.1016/j.euprot.2014.05.003.

    Article  CAS  Google Scholar 

  6. Tarchevsky, I. A. (n.d). Pathogen-induced plant proteins (review). Applied Biochemistry and Microbiology, 37(5), 441–455. doi:10.1023/A:1010267704445.

  7. Ong, P. Y., Ohtake, T., Brandt, C., Strickland, I., Boguniewicz, M., Ganz, T., et al. (2002). Endogenous antimicrobial peptides and skin infections in atopic dermatitis. New England Journal of Medicine, 347(15), 1151–1160. doi:10.1056/NEJMoa021481.

    Article  CAS  Google Scholar 

  8. Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55(1), 27–55. doi:10.1124/pr.55.1.2.

    Article  CAS  Google Scholar 

  9. Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology, 3(3), 238–250. doi:10.1038/nrmicro1098.

    CAS  Google Scholar 

  10. Hutchinson, T., Hu, H., & Patel, J. (2016). Cell penetrating peptide-mediated Caveolae-dependent activation of lung endothelial nitric oxide synthase. Protein & Peptide Letters, 23(2), 169–175. doi:10.2174/0929866523666151211115151.

    Article  CAS  Google Scholar 

  11. Schaller, G., Urech, K., & Giannattasio, M. (1996). Cytotoxicity of different viscotoxins and extracts from the European subspecies of Viscum album L. Phytotherapy Research, 10(6), 473–477. doi:10.1002/(SICI)1099-1573(199609)10:6<473::AID-PTR879>3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  12. Bogomolovas, J., Simon, B., Sattler, M., & Stier, G. (2009). Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expression and Purification, 64(1), 16–23. doi:10.1016/j.pep.2008.10.003.

    Article  CAS  Google Scholar 

  13. Khwaja, T. A., Dias, C. B., & Pentecost, S. (1986). Recent studies on the anticancer activities of mistletoe (Viscum album) and its alkaloids. Oncology, 43(Suppl 1), 42–50.

    CAS  Google Scholar 

  14. Bar-Sela, G. (2011). White-berry mistletoe (Viscum album L.) as complementary treatment in cancer: does it help? European Journal of Integrative Medicine, 3(2), e55–e62. doi:10.1016/j.eujim.2011.03.002.

    Article  Google Scholar 

  15. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395. doi:10.1038/415389a.

    Article  CAS  Google Scholar 

  16. Boman, H. G. (2003). Antibacterial peptides: basic facts and emerging concepts. Journal of Internal Medicine, 254(3), 197–215.

    Article  CAS  Google Scholar 

  17. Hancock, R. E. W., & Sahl, H.-G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24(12), 1551–1557. doi:10.1038/nbt1267.

    Article  CAS  Google Scholar 

  18. Fosgerau, K., & Hoffmann, T. (2014). Peptide therapeutics: current status and future directions. Drug Discovery Today. doi:10.1016/j.drudis.2014.10.003.

    Google Scholar 

  19. Kamysz, W., Okrój, M., & Łukasiak, J. (2003). Novel properties of antimicrobial peptides. Acta Biochimica Polonica, 50(2), 461–469.

    CAS  Google Scholar 

  20. Gruber, C. W., Cemazar, M., Anderson, M. A., & Craik, D. J. (2007). Insecticidal plant cyclotides and related cystine knot toxins. Toxicon: Official Journal of the International Society on Toxinology, 49(4), 561–575. doi:10.1016/j.toxicon.2006.11.018.

    Article  CAS  Google Scholar 

  21. Rajendran, V., & Sethumadhavan, R. (2014). Drug resistance mechanism of PncA in mycobacterium tuberculosis. Journal of Biomolecular Structure & Dynamics, 32(2), 209–221. doi:10.1080/07391102.2012.759885.

    Article  CAS  Google Scholar 

  22. Kamaraj, B., Purohit, R., Kamaraj, B., & Purohit, R. (2013). In silico screening and molecular dynamics simulation of disease-associated nsSNP in TYRP1 gene and its structural consequences in OCA3. BioMed Research International, 2013, e697051. doi:10.1155/2013/697051.

    Article  Google Scholar 

  23. Gopalakrishnan, C., Kalsi, N., Jethi, S., & Purohit, R. (2015). Computational investigation of molecular mechanism and neuropathological implications in Huntington disease. Molecular and Cellular Biochemistry, 409(1–2), 1–11. doi:10.1007/s11010-015-2462-7.

    Article  CAS  Google Scholar 

  24. Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PloS One, 8(10), e77453. doi:10.1371/journal.pone.0077453.

    Article  CAS  Google Scholar 

  25. Kamaraj, B., Rajendran, V., Sethumadhavan, R., Kumar, C. V., & Purohit, R. (2015). Mutational analysis of FUS gene and its structural and functional role in amyotrophic lateral sclerosis 6. Journal of Biomolecular Structure and Dynamics, 33(4), 834–844. doi:10.1080/07391102.2014.915762.

    Article  CAS  Google Scholar 

  26. Purohit, R. (2014). Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. Journal of Biomolecular Structure and Dynamics, 32(7), 1033–1046. doi:10.1080/07391102.2013.803264.

    Article  CAS  Google Scholar 

  27. Rajendran, V., Purohit, R., & Sethumadhavan, R. (2012). In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids, 43(2), 603–615. doi:10.1007/s00726-011-1108-7.

    Article  CAS  Google Scholar 

  28. Rajendran, V. (2016). Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Molecular BioSystems, 12(7), 2276–2287. doi:10.1039/C6MB00182C.

    Article  CAS  Google Scholar 

  29. Malavolta, L., Cabral, F. R., Conterras, L. F. G., Ringheim, A. M., & Bressan, R. A. (2009). Use of peptides combined with nanotechnology and molecular imaging: new tools for diagnosis and treatment of neuropsychiatric disorders. Revista Brasileira De Psiquiatria (São Paulo, Brazil: 1999), 31(4), 300–302.

    Article  Google Scholar 

  30. Pal, A., Debreczeni, J. E., Sevvana, M., Gruene, T., Kahle, B., Zeeck, A., & Sheldrick, G. M. (2008). Structures of viscotoxins A1 and B2 from European mistletoe solved using native data alone. Acta Crystallographica. Section D, Biological Crystallography, 64(Pt 9), 985–992. doi:10.1107/S0907444908022646.

    Article  CAS  Google Scholar 

  31. Romagnoli, S., Ugolini, R., Fogolari, F., Schaller, G., Urech, K., Giannattasio, M., et al. (2000). NMR structural determination of viscotoxin A3 from Viscum album L. Biochemical Journal, 350(Pt 2), 569–577.

    Article  CAS  Google Scholar 

  32. Coulon, A., Mosbah, A., Lopez, A., Sautereau, A.-M., Schaller, G., Urech, K., et al. (2003). Comparative membrane interaction study of viscotoxins A3, A2 and B from mistletoe (Viscum album) and connections with their structures. The Biochemical Journal, 374(Pt 1), 71–78. doi:10.1042/BJ20030488.

    Article  CAS  Google Scholar 

  33. Romagnoli, S., Fogolari, F., Catalano, M., Zetta, L., Schaller, G., Urech, K., et al. (2003). NMR solution structure of viscotoxin C1 from Viscum album species Coloratum ohwi: toward a structure-function analysis of viscotoxins. Biochemistry, 42(43), 12503–12510. doi:10.1021/bi034762t.

    Article  CAS  Google Scholar 

  34. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242.

    Article  CAS  Google Scholar 

  35. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. doi:10.1002/jcc.20291.

    Article  CAS  Google Scholar 

  36. Pei, J., Kim, B.-H., & Grishin, N. V. (2008). PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Research, 36(7), 2295–2300. doi:10.1093/nar/gkn072.

    Article  CAS  Google Scholar 

  37. Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: protein interactions calculator. Nucleic Acids Research, 35(Web Server), W473–W476. doi:10.1093/nar/gkm423.

    Article  CAS  Google Scholar 

  38. Nick Pace, C., Trevino, S., Prabhakaran, E., & Martin Scholtz, J. (2004). Protein structure, stability and solubility in water and other solvents. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1448), 1225–1235. doi:10.1098/rstb.2004.1500.

    Article  Google Scholar 

  39. Seeliger, D., & De Groot, B. L. (2009). tCONCOORD-GUI: visually supported conformational sampling of bioactive molecules. Journal of Computational Chemistry, 30(7), 1160–1166. doi:10.1002/jcc.21127.

    Article  CAS  Google Scholar 

  40. Seeliger, D., & de Groot, B. L. (2010). Conformational transitions upon ligand binding: holo-structure prediction from Apo conformations. PLoS Computational Biology, 6(1), e1000634. doi:10.1371/journal.pcbi.1000634.

    Article  Google Scholar 

  41. Pedretti, A., Villa, L., & Vistoli, G. (2004). VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. Journal of Computer-Aided Molecular Design, 18(3), 167–173.

    Article  CAS  Google Scholar 

  42. Kempner, E. S. (1993). Movable lobes and flexible loops in proteins. Structural deformations that control biochemical activity. FEBS Letters, 326(1–3), 4–10.

    Article  CAS  Google Scholar 

  43. Carlsen, M., Koehl, P., & Røgen, P. (2014). On the importance of the distance measures used to train and test knowledge-based potentials for proteins. PloS One, 9(11), e109335. doi:10.1371/journal.pone.0109335.

    Article  Google Scholar 

  44. Carrascoza, F., Zaric, S., & Silaghi-Dumitrescu, R. (2014). Computational study of protein secondary structure elements: Ramachandran plots revisited. Journal of Molecular Graphics & Modelling, 50, 125–133. doi:10.1016/j.jmgm.2014.04.001.

    Article  CAS  Google Scholar 

  45. Vogt, G., Woell, S., & Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269(4), 631–643.

    Article  CAS  Google Scholar 

  46. Gofman, Y., Haliloglu, T., & Ben-Tal, N. (2012). Monte Carlo simulations of peptide-membrane interactions with the MCPep web server. Nucleic Acids Research, 40(Web Server issue), W358–W363. doi:10.1093/nar/gks577.

    Article  CAS  Google Scholar 

  47. Kruskal, W. H. (1952). A nonparametric test for the several sample problem. The. Annals of Mathematical Statistics, 23(4), 525–540. doi:10.1214/aoms/1177729332.

    Article  Google Scholar 

  48. Giudici, M., Pascual, R., de la Canal, L., Pfüller, K., Pfüller, U., & Villalaín, J. (2003). Interaction of viscotoxins A3 and B with membrane model systems: implications to their mechanism of action. Biophysical Journal, 85(2), 971–981. doi:10.1016/S0006-3495(03)74536-6.

    Article  CAS  Google Scholar 

  49. Ahmad, S., Kamal, M. Z., Sankaranarayanan, R., & Rao, N. M. (2008). Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. Journal of Molecular Biology, 381(2), 324–340. doi:10.1016/j.jmb.2008.05.063.

    Article  CAS  Google Scholar 

  50. Rajasekaran, M., Abirami, S., & Chen, C. (2011). Effects of single nucleotide polymorphisms on human N-acetyltransferase 2 structure and dynamics by molecular dynamics simulation. PloS One, 6(9), e25801. doi:10.1371/journal.pone.0025801.

    Article  CAS  Google Scholar 

  51. Rajasekaran, M., & Chen, C. (2012). Structural effect of the L16Q, K50E, and R53P mutations on homeodomain of pituitary homeobox protein 2. International Journal of Biological Macromolecules, 51(3), 305–313. doi:10.1016/j.ijbiomac.2012.05.008.

    Article  CAS  Google Scholar 

  52. Thomas, S., Karnik, S., Barai, R. S., Jayaraman, V. K., & Idicula-Thomas, S. (2010). CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Research, 38(Database), D774–D780. doi:10.1093/nar/gkp1021.

    Article  CAS  Google Scholar 

  53. Ganz, T. (2003). The role of antimicrobial peptides in innate immunity. Integrative and Comparative Biology, 43(2), 300–304. doi:10.1093/icb/43.2.300.

    Article  CAS  Google Scholar 

  54. Sudan, R. J. J., & Sudandiradoss, C. (2014). In silico analysis of metal coordination geometry in arsenic, beryllium, and lead bound structures. Journal of Coordination Chemistry, 67(11), 1888–1904. doi:10.1080/00958972.2014.931945.

    Article  Google Scholar 

  55. Jesu Jaya Sudan, R., & Sudandiradoss, C. (2012). Pattern prediction and coordination geometry analysis from cadmium-binding proteins: a computational approach. Acta Crystallographica Section D Biological Crystallography, 68(10), 1346–1358. doi:10.1107/S0907444912028776.

    Article  CAS  Google Scholar 

  56. Jesu Jaya Sudan, R., Lesitha Jeeva Kumari, J., & Sudandiradoss, C. (2015). Ab initio coordination chemistry for nickel chelation motifs. PloS One, 10(5). doi:10.1371/journal.pone.0126787.

  57. Colgrave, M. L., & Craik, D. J. (2004). Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry, 43(20), 5965–5975. doi:10.1021/bi049711q.

    Article  CAS  Google Scholar 

  58. Olson, T., & Samuelsson, G. (1974). The disulphide bonds of viscotoxin A2 from the European mistletoe (Viscum album L. Loranthaceae). Acta Pharmaceutica Suecica, 11(4), 381–386.

    CAS  Google Scholar 

  59. Mahalingam, R., Peng, H.-P., & Yang, A.-S. (2014). Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms. Biophysical Chemistry, 192, 10–19. doi:10.1016/j.bpc.2014.05.002.

    Article  CAS  Google Scholar 

  60. Mahalingam, R., Peng, H.-P., & Yang, A.-S. (2014). Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces. Journal of Theoretical Biology, 343, 154–161. doi:10.1016/j.jtbi.2013.10.020.

    Article  CAS  Google Scholar 

  61. Purohit, R., Rajasekaran, R., Sudandiradoss, C., George Priya Doss, C., Ramanathan, K., & Rao, S. (2008). Studies on flexibility and binding affinity of Asp25 of HIV-1 protease mutants. International Journal of Biological Macromolecules, 42(4), 386–391. doi:10.1016/j.ijbiomac.2008.01.011.

    Article  CAS  Google Scholar 

  62. Unsworth, L. D., van der Oost, J., & Koutsopoulos, S. (2007). Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications: properties and applications of hyperthermozymes. FEBS Journal, 274(16), 4044–4056. doi:10.1111/j.1742-4658.2007.05954.x.

    Article  CAS  Google Scholar 

  63. Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. doi:10.1134/S0026893308040195.

    Article  CAS  Google Scholar 

  64. Adejoro, I. A., Akintemi, E., Adeboye, O. O., & Ibeji, C. (2014). Quantum mechanical studies of the structure-activity relationship and electronic vibration of some dietary flavonoids. Asian Journal of Applied Sciences, 7(3), 117–128. doi:10.3923/ajaps.2014.117.128.

    Article  CAS  Google Scholar 

  65. Colgrave, M. L., Huang, Y.-H., Craik, D. J., & Kotze, A. C. (2010). Cyclotide interactions with the nematode external surface. Antimicrobial Agents and Chemotherapy, 54(5), 2160–2166. doi:10.1128/AAC.01306-09.

    Article  CAS  Google Scholar 

  66. Stenberg, P., Luthman, K., & Artursson, P. (1999). Prediction of membrane permeability to peptides from calculated dynamic molecular surface properties. Pharmaceutical Research, 16(2), 205–212. doi:10.1023/A:1018816122458.

    Article  CAS  Google Scholar 

  67. Gaillard, P., Carrupt, P. A., Testa, B., & Boudon, A. (1994). Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. Journal of Computer-Aided Molecular Design, 8(2), 83–96.

    Article  CAS  Google Scholar 

  68. Lou, Y.-C., Wei, S.-Y., Rajasekaran, M., Chou, C.-C., Hsu, H.-M., Tai, J.-H., & Chen, C. (2009). NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Nucleic Acids Research, 37(7), 2381–2394. doi:10.1093/nar/gkp097.

    Article  CAS  Google Scholar 

  69. Chuang, C.-C., Chen, C.-Y., Yang, J.-M., Lyu, P.-C., & Hwang, J.-K. (2003). Relationship between protein structures and disulfide-bonding patterns. Proteins, 53(1), 1–5. doi:10.1002/prot.10492.

    Article  CAS  Google Scholar 

  70. Senthilkumar, B., Kumar, P., & Rajasekaran, R. (2015). In-silico template selection of in-vitro evolved kalata B1 of Oldenlandia affinis for scaffolding peptide based drug design. Journal of Cellular Biochemistry. doi:10.1002/jcb.25248.

    Google Scholar 

  71. Nagibina, G., Tin, U., Glukhov, A., Melnik, T., & Melnik, B. (2016). Intrinsic disorder-based Design of Stabilizing Disulphide Bridge in G.O protein. Protein & Peptide Letters, 23(2), 176–184. doi:10.2174/092986652302160105130540.

    Article  CAS  Google Scholar 

  72. Soylu, İ., & Marino, S. M. (2016). Cy-preds: an algorithm and a web service for the analysis and prediction of cysteine reactivity. Proteins: Structure, Function, and Bioinformatics, 84(2), 278–291. doi:10.1002/prot.24978.

    Article  CAS  Google Scholar 

  73. Tam, J. P., Lu, Y. A., Yang, J. L., & Chiu, K. W. (1999). An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 8913–8918.

    Article  CAS  Google Scholar 

  74. Bulaj, G. (2005). Formation of disulfide bonds in proteins and peptides. Biotechnology Advances, 23(1), 87–92. doi:10.1016/j.biotechadv.2004.09.002.

    Article  CAS  Google Scholar 

  75. Daly, N. L., Clark, R. J., Göransson, U., & Craik, D. J. (2003). Diversity in the disulfide folding pathways of cystine knot peptides. Letters in Peptide Science, 10(5–6), 523–531. doi:10.1007/s10989-004-2417-4.

    Article  CAS  Google Scholar 

  76. Giudici, M., Poveda, J. A., Molina, M. L., de la Canal, L., González-Ros, J. M., Pfüller, K., et al. (2006). Antifungal effects and mechanism of action of viscotoxin A3. The FEBS Journal, 273(1), 72–83. doi:10.1111/j.1742-4658.2005.05042.x.

    Article  CAS  Google Scholar 

  77. Lazaridis, T. (2005). Implicit solvent simulations of peptide interactions with anionic lipid membranes. Proteins, 58(3), 518–527. doi:10.1002/prot.20358.

    Article  CAS  Google Scholar 

  78. Craik, D. J., Daly, N. L., & Waine, C. (2001). The cystine knot motif in toxins and implications for drug design. Toxicon: Official Journal of the International Society on Toxinology, 39(1), 43–60.

    Article  CAS  Google Scholar 

  79. Craik, D. J., Simonsen, S., & Daly, N. L. (2002). The cyclotides: novel macrocyclic peptides as scaffolds in drug design. Current Opinion in Drug Discovery & Development, 5(2), 251–260.

    CAS  Google Scholar 

  80. Rizzello, L., Cingolani, R., & Pompa, P. P. (2013). Nanotechnology tools for antibacterial materials. Nanomedicine (London, England), 8(5), 807–821. doi:10.2217/nnm.13.63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the management of VIT University for providing the facilities and encouragement to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajasekaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, B., Rajasekaran, R. In Silico Template Selection of Short Antimicrobial Peptide Viscotoxin for Improving Its Antimicrobial Efficiency in Development of Potential Therapeutic Drugs. Appl Biochem Biotechnol 181, 898–913 (2017). https://doi.org/10.1007/s12010-016-2257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2257-7

Keywords

Navigation