Skip to main content
Log in

One-Step Bioprocess of Inulin to Product Inulo-Oligosaccharides Using Bacillus subtilis Secreting an Extracellular Endo-Inulinase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Inulo-oligosaccharides (IOSs), a novel food additive and health product, represent a promising alternative to antibiotics. As prebiotics, IOSs can be obtained from inulin by endo-inulinase-mediated hydrolysis. Nonetheless, enzymatic catalysis is not feasible industrially because of the required catalytic conditions and cost. In this study, a 2331-bp optimized gene inuQ (from Pseudomonas mucidolens) encoding endo-inulinase was cloned into shuttle vector PHY300PLK and transfected into Bacillus subtilis WB800-R, with the simultaneous deletion of gene sacC encoding levanase. The maximal IOS yield after hydrolysis of the crude extract of inulin was 67.84 ± 0.72 g/L for a recombinant strain with the signal peptide nprB from alkaline protease and promoter P43. The conversion rate reached 75.38%. For the major IOSs, the degree of polymerization was between 3 and 5. This study offers a simple and efficient one-step bioprocess for IOS production from inulin through secretion of an extracellular heterologous endo-inulinase by B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pandey, A., Soccol, C. R., Selvakumar, P., Soccol, V. T., Krieger, N., & Fontana, J. D. (1999). Recent developments in microbial inulinases. Applied Biochemistry and Biotechnology, 81(1), 35–52.

    Article  CAS  Google Scholar 

  2. Hidaka, H., Eida, T., Takizawa, T., Tokunaga, T., & Tashiro, Y. (1986). Effect of fructooligosaccharides on intestinal flora and human health. Bifidobacterla Microflora, 5(1), 37–50.

    Article  Google Scholar 

  3. Wada, K., Watanabe, J., Mizutani, J., Tomoda, M., Suzuki, H., & Saitoh, Y. (1992). Effect of soybean oligosaccharides in a beverage on human fecal flora and metabolites. Nippon Nogei-kagaku Kaishi, 66(2), 127–135. (in Japanese).

    Article  Google Scholar 

  4. Yun, J. W. (1996). Fructooligosaccharides-occurrence, preparation, and application. Enzyme and Microbial Technology, 19(2), 107–117.

    Article  CAS  Google Scholar 

  5. Chen, M., Lei, X., Chen, C., Zhang, S., Xie, J., & Wei, D. (2015). Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulooligosaccharides. Applied Biochemistry and Biotechnology, 175(2), 1153–1167.

    Article  CAS  Google Scholar 

  6. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Recent trends in the microbial production: analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16(10), 442–457.

    Article  CAS  Google Scholar 

  7. Uhm, T., Chae, K.-S., Lee, D., Kim, H., Cassart, J., & Vandenhaute, J. (1998). Cloning and nucleotide sequence of the endoinulinase-encoding gene, inu2, from Aspergillus ficuum. Biotechnology Letters, 20(8), 809–812.

    Article  CAS  Google Scholar 

  8. Nishizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by l-fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production. Food Science and Technology Research, 7(1), 39–44.

    Article  CAS  Google Scholar 

  9. Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82(2), 211–220.

    Article  CAS  Google Scholar 

  10. Yun, J., Park, J., Song, C., Lee, C., Kim, J., & Song, S. (2000). Continuous production of inulo-oligosaccharides from chicory juice by immobilized endoinulinase. Bioprocess Engineering, 22(3), 189–194.

    Article  CAS  Google Scholar 

  11. Ettalibi, M., & Baratti, J. C. (1987). Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum. Applied Microbiology and Biotechnology, 26(1), 13–20.

    Article  CAS  Google Scholar 

  12. Xu, Y.-B., Zheng, Z.-J., Xu, Q.-Q., Yong, Q., & Ouyang, J. (2016). Efficient conversion of inulin to inulooligosaccharides through endoinulinase from Aspergillus niger. Journal of Agricultural and Food Chemistry, 64(12), 2612–2618.

    Article  CAS  Google Scholar 

  13. Finn, R. D., Tate, J., & Mistry, J. (2008). The pfam protein families database. Nucleic Acids Research, 36, 281–288.

    Article  Google Scholar 

  14. Scigelova, M., Singh, S., & Crout, D. H. (1999). Glycosidases—a great synthetic tool. Journal of Molecular Catalysis B: Enzymatic, 6(5), 483–494.

    Article  CAS  Google Scholar 

  15. Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3(9), 853–859.

    Article  CAS  Google Scholar 

  16. Roberfroid, M. B., Van Loo, J. A., & Gibson, G. R. (1998). The bifidogenic nature of chicory inulin and its hydrolysis products. Journal of Nutrition, 128(1), 11–19.

    Article  CAS  Google Scholar 

  17. Li, Y., Liu, G.-L., Wang, K., Chi, Z.-M., & Madzak, C. (2012). Overexpression of the endo-inulinase gene from Arthrobacter sp. S37 in Yarrowia lipolytica and characterization of the recombinant endo-inulinase. Journal of Molecular Catalysis B: Enzymatic, 74(1-2), 109–115.

    Article  CAS  Google Scholar 

  18. Nakamura, T., Shitara, A., Matsuda, S., Matsuo, T., Suiko, M., & Ohta, K. (1997). Production, purification and properties of an endoinulinase of Penicillium sp. TN-88 that liberates inulotriose. Journal of Fermentation and Bioengineering, 84(4), 313–318.

    Article  CAS  Google Scholar 

  19. Kim, D. H., Choi, Y. J., Song, S. K., & Yun, J. W. (1997). Production of inulo-oligosaccharides using endo-inulinase from a Pseudomonas sp. Journal of Fermentation and Bioengineering, 19, 369–372.

    CAS  Google Scholar 

  20. Chen, X.-M., Xu, X.-M., Jin, Z.-Y., & Chen, H.-Q. (2012). Expression of an endoinulinase from Aspergillus ficuum JNSP5-06 in Escherichia coli and its characterization. Carbohydrate. Polymers, 88(2), 748–753.

    Article  CAS  Google Scholar 

  21. He, M., Wu, D., Wu, J., & Chen, J. (2014). Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production. Journal of Industrial Microbiology and Biotechnology, 41(1), 105–114.

    Article  CAS  Google Scholar 

  22. Jong, W. Y., Yong, J. C., Chii, H. S., & Seung, K. S. (1999). Microbial production of inulo-oligosaccharides by an endoinulinase from Pseudomonas sp. expressed in Escherichia coli. Journal of Bioscience and Bioengineering, (3), 291–295.

  23. Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochemica Biophysica Acta, 1694(1-3), 299–310.

    Article  CAS  Google Scholar 

  24. Chen, M., Lei, X., Chen, C., Zhang, S., Xie, J., & Wei, D. (2015). Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulo-oligosaccharides. Applied Biochemistry and Biotechnology, 175(2), 1153–1167.

    Article  CAS  Google Scholar 

  25. Gill, P. K., Manhas, R. K., Singh, J., & Singh, P. (2004). Purification and characterization of an exo-inulinase from Aspergillus fumigatus. Applied Biochemistry and Biotechnology, 117(1), 19–32.

    Article  CAS  Google Scholar 

  26. Leelasuphakul, W., Hemmanee, P., & Chuenchitt, S. (2008). Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology, 48(1), 113–121.

    Article  CAS  Google Scholar 

  27. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  28. Park, S., Jeong, H. Y., Kim, H. S., Yang, M. S., & Chae, K. S. (2001). Enhanced production of Aspergillus ficuum endoinulinase in Saccharomyces cerevisiae by using the SUC2 deletion mutation. Enzyme Microbiology. Technology, 29(2-3), 107–110.

    Article  CAS  Google Scholar 

  29. Gao, J., Xu, H., Li, Q. -J., Feng, X.-H., & Li, S. (2010). Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresource Technology, 101(18), 7076–7082.

  30. Zhang, W., Gao, W.-X., Feng, J., Zhang, C., He, Y.-L., Cao, M. F., Li, Q., Sun, Y., Yang, C., Song, C.-J., & Wang, S.-F. (2014). A markerless gene replacement method for B.amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Applied Microbiology and Biotechnology, 98(21), 8963–8973.

    Article  CAS  Google Scholar 

  31. Wu, S. C., Ye, R., C, X., Wu, S. C., & Ng, S. L. (1998). Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. Journal of Bacteriology, 180(11), 2830–2835.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kolkman, M. A. B., van der Ploeg, R., Bertels, M., van Dijk, M., van der Laan, J., van Dijl, J. M., & Ferrari, E. (2008). The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec- dependent secretion of different cargo proteins: Secretion of active subtilisin via the B. subtilis Tat pathway. Applied and Environmental Microbiology, 74(24), 7507–7513.

    Article  CAS  Google Scholar 

  33. Schumann, W. (2007). Production of recombinant proteins in Bacillus subtilis. Advances in Applied Microbiology, 62, 137–189.

    Article  CAS  Google Scholar 

  34. Zhu, F.-M., Ji, S.-Y., Zhang, W.-W., Li, W., & Cao, B.-Y. (2008). Development and application of a novel signal peptide probe vector with PGA as reporter in Bacillus subtilis WB700: twenty-four Tat pathway signal peptides from Bacillus subtilis were monitored. Molecular Biotechnology, 39(3), 225–230.

    Article  CAS  Google Scholar 

  35. Aymerich, S. G., Gonzy-Treboul, G., & Steinmetz, M. (1986). 5'-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. Journal of Bacteriology, 166(3), 993–998.

    Article  CAS  Google Scholar 

  36. Mullin, W.-J., Modler, H.-W., Farnworth, E.-R., & Payne, A. (1994). The macronutrient content of fractions from Jerusalem artichoke tubers (Helianthus tubersosus). Food Chemistry, 51(3), 263–269.

    Article  CAS  Google Scholar 

  37. Cao, C., Zhang, L., Gao, J., Xu, H., Xue, F., Huang, W.-W., & Li, Y. (2017). Research on the solid state fermentation of Jerusalem artichoke pomace for producing R,R-2,3-butanediol by Paenibacillus polymyxa ZJ-9. Applied Biochemistry and Biotechnology, 182(2), 687–696.

    Article  CAS  Google Scholar 

  38. Wang, D., Li, F. L., & Wang, S. A. (2016). A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydrate Polymers, 151, 1220–1226.

    Article  CAS  Google Scholar 

  39. Wang, P. P., Ma, J. F., Zhang, Y., Zhang, M., Wu, M. K., Dai, Z. X., & Jiang, M. (2016). Efficient secretory overexpression of endoinulinase in Escherichia coli and the production of inulooligosaccharides. Applied Biochemistry and Biotechnology, 123, 230–234.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant 21376203), the Promotion Program of Achievements in Scientific Research for Industrial Production of Higher Education of Jiangsu Province (Grant JHB2011-54), Qinglan Project of Higher Education of Jiangsu Province, Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents of Jiangsu Province, Jiangsu Agricultural Key Technology Research and Development Program (Grant BE2012394).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Gao or Hong Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Qiu, Y., Huang, W. et al. One-Step Bioprocess of Inulin to Product Inulo-Oligosaccharides Using Bacillus subtilis Secreting an Extracellular Endo-Inulinase. Appl Biochem Biotechnol 187, 116–128 (2019). https://doi.org/10.1007/s12010-018-2806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2806-3

Keywords

Navigation