Skip to main content
Log in

A Computational Approach to Incorporate Metabolite Inhibition in the Growth Kinetics of Indigenous Bacterial Strain Bacillus subtilis MN372379 in the Treatment of Wastewater Containing Congo Red Dye

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A rigorous knowledge of the bacterial growth kinetics is essential for the scaling-up and optimization of biodegradation process conditions in a bioreactor. Although a great deal of literature is available on the modeling of bacterial growth kinetics considering the inhibition at high substrate-loading, the inhibition caused by toxic metabolic byproducts was not accounted in the bacterial growth kinetics. This work primarily aimed at developing a parametric bacterial growth model to account for metabolite inhibition, indicated by a decelerating log-phase growth, which was rarely discussed in the previous studies. An efficient azo-dye degrading bacterium (Bacillus subtilis MN372379) was isolated from the sludge-waste nearby a carpet-dyeing unit. The isolated bacterial strain was used to decolorize the simulated wastewater containing Congo red dye. This study proposed a computational approach to calculate specific bacterial growth rate time-averaged over the entire sigmoidal log phase (including the decelerating phase) for incorporating the effect of metabolite-inhibition, in contrast to the conventional studies where only the initial part (accelerating) of log phase was considered. The nature of metabolite inhibition was also determined and found to be non-competitive. Next, the computed time-averaged specific bacterial growth rate was incorporated into three substrate inhibition models to account for both, the metabolite and substrate inhibitions, and subsequently their kinetic parameters were also determined. Finally, the initial dye concentration and inoculum size were optimized to yield maximum dye utilization rate. This study paves the way for predicting bacterial growth kinetic with improved accuracy to enable a better optimization of bioreactors at the industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Not applicable

Code Availability

Not applicable

References

  1. Kalyani, D. C., Patil, P. S., Jadhav, J. P., & Govindwar, S. P. (2008). Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp . SUK1. Bioresource Technology, 99(11), 4635–4641.

    Article  CAS  Google Scholar 

  2. Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater : A Review. Critical Reviews in Environmental Science and Technology, 47(19), 1836–1876.

    Article  CAS  Google Scholar 

  3. Banerjee, U. C., Rai, H. S., Bhattacharya, M. S., Singh, J., Bansal, T. K., & Vats, P. (2005). Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Critical Reviews in Environmental Science and Technology, 35, 219–238.

    Article  Google Scholar 

  4. Koyani, R. D., Sanghvi, G. V., Sharma, R. K., & Rajput, K. S. (2013). Contribution of lignin degrading enzymes in decolourisation and degradation of reactive textile dyes. International Biodeterioration and Biodegradation, 77, 1–9.

    Article  CAS  Google Scholar 

  5. Belkacem, M., Khodir, M., & Abdelkrim, S. (2008). Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination, 228(1-3), 245–254.

    Article  CAS  Google Scholar 

  6. Hartmann, M., Kullmann, S., & Keller, H. (2010). Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. Journal of Materials Chemistry, 20(41), 9002–9017.

    Article  CAS  Google Scholar 

  7. Mahmoud, H. R., El-Molla, S. A., & Saif, M. (2013). Improvement of physicochemical properties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dye removal from industrial wastewater. Powder Technology, 249, 225–233.

    Article  CAS  Google Scholar 

  8. Somensi, C. A., Simionatto, E. L., Bertoli, S. L., Wisniewski, A., & Radetski, C. M. (2010). Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater. Journal of Hazardus Materials, 175(1-3), 235–240.

    Article  CAS  Google Scholar 

  9. Chaturvedi, A., Rai, B. N., Singh, R. S., & Jaiswal, R. P. (2021). A comprehensive review on the integration of advanced oxidation processes with biodegradation for the treatment of textile wastewater containing azo dyes. Reviews in Chemical Engineering (published online ahead of print 2021), 000010151520200010.

  10. Ekambaram, S. P., Perumal, S. S. & Annamalai, U. (2016). Decolorization and biodegradation of remazol reactive dyes by Clostridium species. 3 Biotech, 6, 1–8.

  11. Ghoreishi, S. M., & Haghighi, R. (2003). Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chemical Engineering Journal, 95(1-3), 163–169.

    Article  CAS  Google Scholar 

  12. Paz, A., Carballo, J., Pérez, M. J., & Domínguez, J. M. (2017). Biological treatment of model dyes and textile wastewaters. Chemosphere, 181, 168–177.

    Article  CAS  Google Scholar 

  13. Yaseen, D. A., & Scholz, M. (2018). Treatment of synthetic textile wastewater containing dye mixtures with microcosms. Environmental Science and Pollution Research, 25(2), 1980–1997.

    Article  CAS  Google Scholar 

  14. Tazdaït, D., Abdi, N., Grib, H., Lounici, H., Pauss, A., & Mameri, N. (2013). Comparison of different models of substrate inhibition in aerobic batch biodegradation of malathion. Turkish Journal of Engineering and Environmental Sciences, 37, 221–230.

    Article  Google Scholar 

  15. Machado, K. M. G., Compart, L. C. A., Morais, R. O., Rosa, L. H., Santos, M. H., De Santos, U. C., Centro, F., De Minas, T., & Horizonte, B. (2006). Biodegradation of reactive textile dyes by basidiomycetous fungi from brazilian ecosystems. Brazilian Journal of Microbiology, 37(4), 481–487.

    Article  CAS  Google Scholar 

  16. Sankaran, S., Khanal, S. K., Jasti, N., Jin, B., Pometto, A. L., & Van Leeuwen, J. H. (2010). Use of filmentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Critical Reviews in Environmental Science anf Technology, 10, 400–449.

    Article  Google Scholar 

  17. Niu, Q., Zhang, Y., Ma, H., He, S., & Li & Y. Y. (2016). Reactor kinetics evaluation and performance investigation of a long-term operated UASB-anammox mixed culture process. International Biodeterioration and Biodegradation, 108, 24–33.

    Article  CAS  Google Scholar 

  18. Tan, Y., Wang, Z. X., & Marshall, K. C. (1996). Modeling substrate inhibition of microbial growth. Biotechnology and Bioengineering, 52, 602–608.

    Article  CAS  Google Scholar 

  19. El-Sheekh, M. M., Gharieb, M. M., & Abou-El-Souod, G. W. (2009). Biodegradation of dyes by some green algae and cyanobacteria. International Biodeterioration and Biodegradation, 63(6), 699–704.

    Article  CAS  Google Scholar 

  20. Baranyi, J., McClure, P. J., Sutherland, J. P., & Roberts, T. A. (1993). Modeling bacterial growth responses. Journal of Industrial Microbiology, 12(3-5), 190–194.

    Article  Google Scholar 

  21. Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3(1), 371–394.

    Article  CAS  Google Scholar 

  22. Sponza, D. T., & Işik, M. (2004). Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge. Enzyme and Microbial Technology, 34(2), 147–158.

    Article  CAS  Google Scholar 

  23. Talaiekhozani, A., Jafarzadeh, N., Fulazzaky, M. A., Talaie, M. R., & Beheshti, M. (2015). Kinetics of substrate utilization and bacterial growth of crude oil degraded by Pseudomonas aeruginosa. Journal of Environmental Health Science and Engineering, 13, 1–8.

    Article  Google Scholar 

  24. Lineweaver, H., & Burk, D. (1934). The Determination of Enzyme Dissociation Constants. Journal of American Chemical Society, 56(3), 658–666.

    Article  CAS  Google Scholar 

  25. Waldrop, G. L. (2009). A qualitative approach to enzyme inhibition. Biochemistry Molecular Biology Education, 37(1), 11–15.

    Article  CAS  Google Scholar 

  26. Arutchelvan, V., Kanakasabai, V., Elangovan, R., Nagarajan, S., & Muralikrishnan, V. (2006). Kinetics of high strength phenol degradation using Bacillus brevis. Journal of Hazardous Materials, 129(1-3), 216–222.

    Article  CAS  Google Scholar 

  27. Geed, S. R., Kureel, M. K., Giri, B. S., Singh, R. S., & Rai, B. N. (2017). Performance evaluation of Malathion biodegradation in batch and continuous packed bed bioreactor (PBBR). Bioresource Technology, 227, 56–65.

    Article  CAS  Google Scholar 

  28. Kureel, M. K., Geed, S. R., Giri, B. S., Rai, B. N., & Singh, R. S. (2017). Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with Bacillus sp. M3. Bioresource Technology, 242, 92–100.

    Article  CAS  Google Scholar 

  29. Monteiro, Á. A. M. G., Boaventura, R. A. R., & Rodrigues, A. E. (2000). Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochemical Engineering Journal, 6(1), 45–49.

    Article  CAS  Google Scholar 

  30. Tsai, S. L., Lin, C. W., Wu, C. H., & Shen, C. M. (2013). Kinetics of xenobiotic biodegradation by the Pseudomonas sp. YATO411 strain in suspension and cell-immobilized beads. Journal of Taiwan Institute of Chemical Engineers, 44(2), 303–309.

    Article  CAS  Google Scholar 

  31. Andrews, J. F. (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering, 10(6), 707–723.

    Article  CAS  Google Scholar 

  32. Aiba, S., Shoda, M., & Nagatani, M. (1968). Kinetics of product inhibition in alcohol fermentation. Biotechnology and Bioengineering, 10(6), 845–864.

    Article  CAS  Google Scholar 

  33. Edwards, V. H. (1970). The influence of high substrate concentrations on microbial kinetics. Biotechnology and Bioengineering, 12(5), 679–712.

    Article  CAS  Google Scholar 

  34. Agarry, S. E., Audu, T. O. K., & Solomon, B. O. (2009). Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. International Journal of Environmental Science and Technology, 6(3), 443–450.

    Article  CAS  Google Scholar 

  35. Sen, S., & Sarkar, P. (2019). Modelling of growth kinetics of isolated Pseudomonas sp. and optimisation of parameters for enhancement of xanthine oxidoreductase production by statistical design of experiments. Journal of Environmental Science and Health - Part A: Toxic/Hazardous Substances and Environmental Engineering, 54(1), 65–78.

    Article  CAS  Google Scholar 

  36. Talha, A., Goswami, M., Giri, B. S., Sharma, A., Rai, B. N., & Singh, R. S. (2018). Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by Brevibacillus parabrevis using coconut shell bio-char. Bioresource Technology, 252, 37–43.

    Article  Google Scholar 

  37. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

    Article  CAS  Google Scholar 

  38. Victor, H., Ganda, V., Kiranadi, B., & Pinontoan, R. (2020). Metabolite Identification from Biodegradation of Congo Red by Pichia sp. KnE Life Sciences, 5(2).

  39. Shah, P. D., Dave, S. R., & Rao, M. S. (2012). Enzymatic degradation of textile dye Reactive Orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. International Biodeterioration and Biodegradation, 69, 41–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Anuj Chaturvedi and Ravi P Jaiswal. Methodology: Ravi P. Jaiswal and Ram S. Singh. Formal analysis and investigation: Anuj Chaturvedi. Writing—original draft preparation: Anuj Chaturvedi and Ravi P. Jaiswal. Writing—review and editing: Anuj Chaturvedi, Ram S. Singh, and Ravi P. Jaiswal. Funding acquisition: Ram S. Singh and Ravi P. Jaiswal. Resources: Birendra N. Rai and Ram S. Singh. Supervision: Ram S. Singh, Birendra N. Rai, and Ravi P. Jaiswal.

Corresponding author

Correspondence to Ravi P. Jaiswal.

Ethics declarations

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

The participant has consented to the submission of the case report to the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, A., Rai, B.N., Singh, R.S. et al. A Computational Approach to Incorporate Metabolite Inhibition in the Growth Kinetics of Indigenous Bacterial Strain Bacillus subtilis MN372379 in the Treatment of Wastewater Containing Congo Red Dye. Appl Biochem Biotechnol 193, 2128–2144 (2021). https://doi.org/10.1007/s12010-021-03538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03538-4

Keywords

Navigation