Skip to main content
Log in

Biosynthesis of Soyasapogenol B by Engineered Saccharomyces cerevisiae

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soyasapogenol B is an oleanane-type pentacyclic triterpene that has various applications in food and healthcare and has a higher biological activity than soyasaponin. Saccharomyces cerevisiae is a potential platform for terpenoid production with mature genetic tools for metabolic pathway manipulation. In this study, we developed a biosynthesis method to produce soyasapogenol B. First, we expressed β-amyrin synthase derived from Glycyrrhiza glabra in S. cerevisiae to generate β-amyrin, as the precursor of soyasapogenol B. Several different types of promoters were then used to regulate the expression of key genes in the mevalonate pathway (MVA), and this subsequently increased the yield of β-amyrin to 17.6 mg/L, 25-fold more than that produced in the original strain L01 (0.68 mg/L). Then, using the β-amyrin-producing strain, we expressed soyasapogenol B synthases from Medicago truncatula (CYP93E2 and CYP72A61V2) and from G. glabra (CYP93E3 and CYP72A566). Soyasapogenol B yields were then optimized by using soyasapogenol B synthases and cytochrome P450 reductase from G. glabra. The most effective soyasapogenol B production strain was used for fermentation, and the yield of soyasapogenol B reached 2.9 mg/L in flask and 8.36 mg/L in a 5-L bioreactor with fed glucose and ethanol. This study demonstrated the heterologous synthesis of soyasapogenol B in S. cerevisiae using the combined expression of CYP93E3 and CYP72A566 in the synthesis pathway, which significantly increased the production of soyasapogenol B and provides a reference method for the biosynthesis of other triterpenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data and material are transparent

Code Availability

Not applicable.

References

  1. Lásztity, R., Hidvégi, M., & Bata, Á. (1998). Saponins in food. Food Rev Int, 14(4), 371–390.

    Article  Google Scholar 

  2. Gurfinkel, D. M., & Rao, A. V. (2002). Determination of saponins in legumes by direct densitometry. J Agric Food Chem, 50(3), 426–430.

    Article  CAS  Google Scholar 

  3. Lee, S. O., Simons, A. L., Murphy, P. A., & Hendrich, S. (2005). Soyasaponins lowered plasma cholesterol and increased fecal bile acids in female golden Syrian hamsters. Exp Biol Med (Maywood), 230(7), 472–478.

    Article  CAS  Google Scholar 

  4. Zha, L. Y., Mao, L. M., Lu, X. C., Deng, H., Ye, J. F., Chu, X. W., Sun, S. X., Luo, H. J., & Luo, H. J. (2011). Anti-inflammatory effect of soyasaponins through suppressing nitric oxide production in LPS-stimulated RAW 264.7 cells by attenuation of NF-κB-mediated nitric oxide synthase expression. Bioorg Med Chem Lett, 21(8), 2415–2418.

    Article  CAS  Google Scholar 

  5. Lee, H. J., Lim, S. M., Ko, D. B., Jeong, J. J., Hwang, Y. H., & Kim, D. H. (2017). Soyasapogenol B and genistein attenuate lipopolysaccharide-induced memory impairment in mice by the modulation of NF-κB-mediated BDNF expression. J Agric Food Chem, 65(32), 6877–6885.

    Article  CAS  Google Scholar 

  6. Iwamoto, K., Kamo, S., Takada, Y., Ieda, A., Yamashita, T., Sato, T., Zaima, N., Moriyama, T., & Moriyama, T. (2018). Soyasapogenols reduce cellular triglyceride levels in 3T3-L1 mouse adipocyte cells by accelerating triglyceride lipolysis. Biochem Biophys Rep, 16, 44–49.

    PubMed  PubMed Central  Google Scholar 

  7. Rowlands, J. C., Berhow, M. A., & Badger, T. M. (2002). Estrogenic and antiproliferative properties of soy sapogenols in human breast cancer cells in vitro. Food Chem Toxicol, 40(12), 1767–1774.

    Article  CAS  Google Scholar 

  8. Zhang, W., & Popovich, D. G. (2008). Effect of soyasapogenol A and soyasapogenol B concentrated extracts on Hep-G2 cell proliferation and apoptosis. J Agric Food Chem, 56(8), 2603–2608.

    Article  CAS  Google Scholar 

  9. Wang, L., Wang, J., Zhao, H., Jiang, G., Feng, X., Sui, W., & Liu, H. (2019). Soyasapogenol B exhibits anti-growth and anti-metastatic activities in clear cell renal cell carcinoma. Naunyn-Schmiedebergs Arch Pharmacol, 392(5), 551–563.

    Article  CAS  Google Scholar 

  10. Wang, L., Yun, L., Wang, X., Sha, L., Wang, L., Sui, Y., & Zhang, H. (2019). Endoplasmic reticulum stress triggered by Soyasapogenol B promotes apoptosis and autophagy in colorectal cancer. Life Sci, 218, 16–24.

    Article  CAS  Google Scholar 

  11. Zhi, L., Song, D., Ma, L., & Feng, T. (2020). Soyasapogenol B attenuates laryngeal carcinoma progression through inducing apoptotic and autophagic cell death. Anat Rec (Hoboken), 303(7), 1851–1858.

    Article  CAS  Google Scholar 

  12. Fukushima, E. O., Seki, H., Sawai, S., Suzuki, M., Ohyama, K., Saito, K., & Muranaka, T. (2013). Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast. Plant Cell Physiol, 54(5), 740–749.

    Article  CAS  Google Scholar 

  13. Lu, C., Zhang, C., Zhao, F., Li, D., & Lu, W. (2018). Biosynthesis of ursolic acid and oleanolic acid in Saccharomyces cerevisiae. AIChE J, 64(11), 3794–3802.

    Article  CAS  Google Scholar 

  14. Wriessnegger, T., & Pichler, H. (2013). Yeast metabolic engineering–targeting sterol metabolism and terpenoid formation. Prog Lipid Res, 52(3), 277–293.

    Article  CAS  Google Scholar 

  15. Ma, B., Liu, M., Li, Z. H., Tao, X., Wei, D. Z., & Wang, F. Q. (2019). Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae. J Agric Food Chem, 67(31), 8590–8598.

    Article  CAS  Google Scholar 

  16. Ahmed, M. S., Ikram, S., Rasool, A., & Li, C. (2019). Design and construction of short synthetic terminators for Β-amyrin production in Saccharomyces cerevisiae. Biochem Eng J, 146, 105–116.

    Article  CAS  Google Scholar 

  17. Zhang, G., Cao, Q., Liu, J., Liu, B., Li, J., & Li, C. (2015). Refactoring β-amyrin synthesis in S accharomyces cerevisiae. AIChE J, 61(10), 3172–3179.

    Article  CAS  Google Scholar 

  18. Zhao, C., Xu, T., Liang, Y., Zhao, S., Ren, L., Wang, Q., & Dou, B. (2015). Functional analysis of β-amyrin synthase gene in ginsenoside biosynthesis by RNA interference. Plant Cell Rep, 34(8), 1307–1315.

    Article  CAS  Google Scholar 

  19. Ito, R., Masukawa, Y., & Hoshino, T. (2013). Purification, kinetics, inhibitors and CD for recombinant β-amyrin synthase from E uphorbia tirucalli L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases. FEBS Journal, 280(5), 1267–1280.

    Article  CAS  Google Scholar 

  20. Jin, M. L., Lee, D. Y., Um, Y., Lee, J. H., Park, C. G., Jetter, R., & Kim, O. T. (2014). Isolation and characterization of an oxidosqualene cyclase gene encoding a β-amyrin synthase involved in Polygala tenuifolia Willd. saponin biosynthesis. Plant Cell Rep, 33(3), 511–519.

    Article  CAS  Google Scholar 

  21. Jo, H. J., Han, J. Y., Hwang, H. S., & Choi, Y. E. (2017). β-Amyrin synthase (EsBAS) and β-amyrin 28-oxidase (CYP716A244) in oleanane-type triterpene saponin biosynthesis in Eleutherococcus senticosus. Phytochemistry, 135, 53–63.

    Article  CAS  Google Scholar 

  22. Ali, M. M., Krishnamurthy, P., El-Hadary, M. H., Kim, J. M., Nawaz, M. A., Yang, S. H., & Chung, G. (2016). Identification and expression profiling of a new β-amyrin synthase gene (GmBAS3) from soybean. Russ J Plant Physiol, 63(3), 383–390.

    Article  CAS  Google Scholar 

  23. Chen, H., Liu, Y., Zhang, X., Zhan, X., & Liu, C. (2013). Cloning and characterization of the gene encoding β-amyrin synthase in the glycyrrhizic acid biosynthetic pathway in Glycyrrhiza uralensis. Acta Pharmacol Sin B, 3, 416–424.

    Article  Google Scholar 

  24. El-Hagrassi, A. M., Ali, M. M., Osman, A. F., & Shaaban, M. (2011). Phytochemical investigation and biological studies of Bombax malabaricum flowers. Nat Prod Res, 25(2), 141–151.

    Article  CAS  Google Scholar 

  25. Carretero, M. E., López-Pérez, J. L., Abad, M. J., Bermejo, P., Tillet, S., Israel, A., & Noguera-P, B. (2008). Preliminary study of the anti-inflammatory activity of hexane extract and fractions from Bursera simaruba (Linneo) Sarg.(Burseraceae) leaves. J Ethnopharmacol, 116(1), 11–15.

    Article  CAS  Google Scholar 

  26. Lin, K. W., Huang, A. M., Tu, H. Y., Lee, L. Y., Wu, C. C., Hour, T. C., Yang, S. C., Pu, Y. S., & Lin, C. N. (2011). Xanthine oxidase inhibitory triterpenoid and phloroglucinol from guttiferaceous plants inhibit growth and induced apoptosis in human NTUB1 cells through a ROS-dependent mechanism. J Agric Food Chem, 59(1), 407–414.

    Article  CAS  Google Scholar 

  27. Seki, H., Ohyama, K., Sawai, S., Mizutani, M., Ohnishi, T., Sudo, H., Akashi, T., Aoki, T., Saito, K., & Muranaka, T. (2008). Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Natl Acad Sci U S A, 105(37), 14204–14209.

    Article  CAS  Google Scholar 

  28. Tamura, K., Yoshida, K., Hiraoka, Y., Sakaguchi, D., Chikugo, A., Mochida, K., Kojoma, M., Mitsuda, N., Saito, K., Muranaka, T., & Seki, H. (2018). The basic helix–loop–helix transcription factor gubhlh3 positively regulates soyasaponin biosynthetic genes in Glycyrrhiza uralensis. Plant Cell Physiol, 59(4), 778–791.

    Article  Google Scholar 

  29. Yamamura, Y., & Mabuchi, A. (2020). Functional characterization of NADPH-cytochrome P450 reductase and cinnamic acid 4-hydroxylase encoding genes from Scoparia dulcis L. Bot Stud, 61(1), 6.

    Article  CAS  Google Scholar 

  30. Burke, D., Dawson, D., & Stearns, T. (2000). Methods in yeast genetics: a Cold Spring Harbor Laboratory Course Manual (2000th ed.). Cold Spring Harbor Laboratory Press.

  31. Gietz, R. D., Schiestl, R. H., Willems, A. R., & Woods, R. A. (1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast, 11(4), 355–360.

    Article  CAS  Google Scholar 

  32. Zeng, B. X., Yao, M. D., Wang, Y., Xiao, W. H., & Yuan, Y. J. (2020). Metabolic engineering of Saccharomyces cerevisiae for enhanced dihydroartemisinic acid production. Front Bioeng Biotechnol, 8, 152.

    Article  Google Scholar 

  33. Li, H., Gao, S., Zhang, S., Zeng, W., & Zhou, J. (2021). Effects of metabolic pathway gene copy numbers on the biosynthesis of (2S)-naringenin in Saccharomyces cerevisiae. J Biotechnol, 325, 119–127.

    Article  CAS  Google Scholar 

  34. Schrider, D. R., & Hahn, M. W. (2010). Gene copy-number polymorphism in nature. Proc Biol Sci, 277, 3213–3221.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yufeng, S., Da Li, H., & Ying, et al. (2019). Cloning and related bioinformatics analysis of new cytochrome NADPH P450 reductase gene in Glycyrrhiza uralensis. Chin Trad Herb Drugs, 50, 1676–1681.

    Google Scholar 

  36. Lan, X., Yuan, W., Wang, M., & Xiao, H. (2019). Efficient biosynthesis of antitumor ganoderic acid HLDOA using a dual tunable system for optimizing the expression of CYP5150L8 and a Ganoderma P450 reductase. Biotechnol Bioeng, 116(12), 3301–3311.

    Article  CAS  Google Scholar 

  37. Zhao, F., Bai, P., Liu, T., Li, D., Zhang, X., Lu, W., & Yuan, Y. (2016). Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol Bioeng, 113(8), 1787–1795.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Tianjin Natural Science Foundation (NO. 20JCQNJC00740) and the National Key Research and Development Program of China (No. 2019YFA0905100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Lu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional Declarations for Articles in Life Science Journals That Report the Results of Studies Involving Humans and/or Animals

This work does not involve humans or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhao, M., Wei, P. et al. Biosynthesis of Soyasapogenol B by Engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol 193, 3202–3213 (2021). https://doi.org/10.1007/s12010-021-03599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03599-5

Keywords

Navigation